
Automated Identification of Fish and Other

Aquatic Life in Underwater Video

Scottish Marine and Freshwater Science Vol 11 No 18

S Blowers, J Evans and K McNally

Automated Identification of Fish and Other Aquatic Life in Underwater

Video

Scottish Marine and Freshwater Science Vol 11 No 18

S Blowers, J Evans and K McNally

Published by Marine Scotland Science

ISSN: 2043-7722

DOI: 10.7489/12333-1

Marine Scotland is the directorate of the Scottish Government responsible for the

integrated management of Scotland’s seas. Marine Scotland Science (formerly

Fisheries Research Services) provides expert scientific and technical advice on

marine and fisheries issues. Scottish Marine and Freshwater Science is a series of

reports that publishes results of research and monitoring carried out by Marine

Scotland Science. It also publishes the results of marine and freshwater scientific

work that has been carried out for Marine Scotland under external commission.

These reports are not subject to formal external peer-review.

This report presents the results of marine and freshwater scientific work carried out for

Marine Scotland under external commission.

© Crown copyright 2020

You may re-use this information (excluding logos and images) free of charge in any

format or medium, under the terms of the Open Government Licence. To view this

licence, visit:

http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/ or email:

psi@nationalarchives.gsi.gov.uk.

Where we have identified any third party copyright information you will need to obtain

permission from the copyright holders concerned.

http://www.nationalarchives.gov.uk/doc/open-governmentlicence/
http://www.nationalarchives.gov.uk/doc/open-governmentlicence/
mailto:psi@nationalarchives.gsi.gov.uk

1

Table of Contents

Executive Summary 3

List of Names and Acronyms 7

Introduction 11

Objective 12

Problem Space 12

Computer Vision 14

Introduction 14

Feature Maps 16

Algorithms 16

Neural Networks 17

Artificial Neural Networks 18

Convolutional Neural Networks 18

Drawbacks to CNNs 20

Computer Vision in Underwater Video 21

Introduction 21

Algorithms Used in Literature 21

Convolutional Neural Networks 22

Competitions 24

Review of Models for Case Study 25

Introduction 25

Available Platforms not Incorporated into Case Study 26

FishTick 26

BIIGLE 26

VIAME 27

Online Service Portals 27

Chosen Platforms for Case Study 27

Open CV 27

Object Detection API (TensorFlow) 28

DeepSORT (Object Tracking) 29

Feature Detection Training Pipelines 29

Extracting Images and Annotations 29

Training Pipeline: Bag of Visual Words 31

2

Training Pipeline: Convolutional Neural Networks 33

Object Detection Pipeline 33

Frame Extraction 33

Background Subtraction 34

ROI Thresholding 35

Feature Classification 35

Object Tracking 35

Case Study 36

Training Models 37

Detection Measurements 37

Fish Detection, Classification, and Counting 38

Processing Times 40

Detections 42

Videos 1 - 5 42

Video 6 - Classifying Sprats vs Smolts 44

Sea Pen Detection and Counting 45

Detections 46

Nephrops Burrow Detection 48

Detections 49

Analysis of Models from Case Study 50

Conclusion 52

Actionable Recommendations 53

Considerations towards a Complete End-User Solution 54

Acknowledgements 57

References 57

3

Automated Identification of Fish and Other Aquatic Life in Underwater

Video

Stephen Blowers, Jonathan Evans and Kyle McNally

MarynSol Ltd

45 Timber Bush, Leith

Edinburgh EH6 6QH

Executive summary

Marine Scotland tasked MarynSol to provide an overview of the current state of

computer vision technologies for automated detection of aquatic life in underwater

video, the objective being to provide a development route for a tool to analyse the

large amount of historic video footage without the need for human supervision. This

task was split into two parts: the first being a review of the literature of the current

technologies and the second being a case study incorporating some of the more

promising candidates for this problem space.

There is considerable immediate potential to make use of such methods for the

automated detection and identification of fish and other fauna in underwater video

material collected in camera boxes connected to trawl nets; during monitoring at tidal

turbines and at wind turbine bases; and at video based fish counters and in the video

validation of fish counters using other technology. It is hoped that such methods may

well allow effective progress to be made with archived video material which various

parties hold which is waiting for review.

Introduction to computer vision

The field of computer vision is wide with many researchers trying to tackle similar

problems in various fields. Most approaches take the form of creating ‘features’, such

as edges or corners, and mapping them together to form objects. A number of

different algorithms have been proposed to perform this with varying levels of

success. However, current trends involve applying a form of artificial neural network

(ANN) algorithm to extract and compare features automatically.

Artificial neural networks are powerful statistical models for estimation and

classification for many different data types and uses. Convolutional Neural Networks

(CNNs) are a type of ANN, which can be used to identify the contents of images by

4

applying multiple convolution stages to extract out features. These CNNs can then

be trained to detect objects such as fish or other aquatic life.

Review of relevant approaches

The literature for this specific problem space follows the same trends as the wider

field of computer vision. Previous works have focused on employing feature

detection algorithms to identify aquatic life but current trends adopt CNN based

algorithms. There are various examples and platforms where CNNs have

successfully identified subjects in a range of video environments. Certain platforms,

such as BIIGLE and CoralNet, adopt CNN algorithms to assist in annotating image

and video data by prompting users with potential regions or classifications. Similarly,

a platform called VIAME hosts a number of algorithms in a single location with an

interactive interface to enable researchers to adopt these methods. Currently, these

platforms offer potential but are still under development so they might not quite yet

be fit for purpose.

Case study scope

A comparison of models was subsequently performed in the case study. This case

study employed mainly open-source algorithms to minimise the time spent in

algorithm development, with the OpenCV (open-source) and Google Object

Detection API (open-source based in Google TensorFlow) libraries chosen to

develop end-to-end pipelines for training and executing models. Background

subtraction algorithms were adopted from OpenCV to determine whether each frame

contained any potential regions to investigate. Subsequently, various feature

detectors were applied to establish whether the region contained an object of

interest. If a certain number of frames were tagged in succession, then they were

flagged as a positive identification. Additionally, a third-party algorithm, DeepSORT

(also open-source), was incorporated to track objects frame by frame to determine

whether the video subjects could be counted automatically.

The OpenCV library offered three feature detectors to incorporate into the pipeline,

SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features)

and ORB (Orientated FAST and Rotated BRIEF). These had to be wrapped into a

method to convert the returned feature descriptions into object detections. The

BoVW (Bag of Visual Words) method was chosen whereby the feature descriptions

were converted into histograms by summing together similar appearing features.

This histogram could then be compared to histograms created by training data to

determine whether the ROI contained the object of interest.

5

Three CNN models were chosen from the Google Object Detection API library for

use in this case study. These were FRCNN (Faster Region-based Convolutional

Neural Network), SSD (Single Shot Detector) and RFCN (Region-based Fully

Convolutional Network). The FRCNN and RFCN algorithms are generally considered

more accurate whilst the SSD algorithm has a much faster processing time. The

Google Object Detection API already contained methods for training and applying

these models with custom data so minimal effort was required to include them into

the working pipeline.

Evaluation on real data scenarios

Video samples were extracted from available data to test the various trained models.

These included samples of Atlantic salmon smolts (Salmo salar) and European

sprats (Sprattus sprattus) passing through a camera box attached to a trawl net, a

mobile sea-bed rig looking at phosphorescent sea pens (Pennatula phosphorea),

and a mobile sea-bed rig looking at Norwegian lobster (Nephrops norvegicus,

termed Nephrops) burrows. This demonstrated the capabilities of the models to

handle a variety of inputs and test the different aspects of the pipeline.

In all cases, the CNN based algorithms outperformed the BoVW based algorithms in

terms of accuracy. For fish counting, the CNN algorithms returned zero false

positives when tagging sets of frames, and the RFCN algorithm was able to detect

95% of smolts passing through. Accuracy was lower when trying to automatically

count fish using the DeepSORT tracking algorithm, with the FRCNN algorithm

successfully tracking 74% of smolts but also returning multiple instances of double

counting. In the classification test for distinguishing between smolts and sprats, the

RFCN algorithm was correct in 98% of detections. In the sea pen trial, the RFCN

algorithm performed best with 89% correctly detected and tracked instances.

Although, in terms of speed, the SSD algorithm performed best with near real time

analysis in some cases, it suffered from poor accuracy compared to the other CNN

algorithms. With the adoption of a cloud computing instance to speed up processing,

the FRCNN and RFCN algorithms were able to process video in 1.6x-1.8x the video

length. The BoVW models tended to be moderately faster unless the frames

contained many regions to analyse, but this speed increase did not make up for the

lack of reliability present in these models.

Unfortunately, identifying the Nephrops burrows in video frames proved to be too

complex to provide robust detections. The combination of blurred footage and very

subtle indicators meant that the object detection algorithms were not able to detect

6

entrances or even confidently detect holes in the ground for further processing.

Alternative processing steps would be required for detecting this type of object in

underwater video.

The speeds and accuracy values quoted here are only indicative of the models used

as their performance can vary greatly with the type of data provided and training

parameters given. However, it is clear that the CNN algorithms outperform the other

feature detection models and should form the basis of any future work. This is also

reflected in the literature analysis, which demonstrated a trend towards this type of

approach in the field of automated aquatic video analysis.

Recommendations

In conclusion to this report, a number of actionable recommendations are provided if

further development in this field is to be performed:

1. For detection of aquatic fauna in video, the convoluted neural networks far

surpass the older algorithms in terms of both accuracy and ease of

development.

2. Develop or document a database of images with annotations on aquatic

species for training purposes.

3. It would be beneficial to develop a platform, or adopt an existing platform, for

aquatic biologists to gain familiarity with the process of training and adopting

these types of models.

4. Some of these computer vision models may outperform humans in some

tasks and underperform in others. Therefore, a certain level of standardisation

of the various elements involved, which might include benchmark tests and

standard data libraries, will be required to compare the performance of

different available processes.

7

List of names and acronyms

AdaBoost
Adaptive Boosting - A machine learning classifying technique that
combines many statistical models with a weighted sum to produce a
stronger statistical model.

AlexNet
A CNN that won the 2012 ILSVRC by a large margin, which some
consider to be a turning point in the field of computer vision to adopt
more CNN methods.

ANN
Artificial Neural Network - A statistical analysis tool that is built up of
nodes and trainable connections which resembles neural networks of
the human brain.

AWS
Amazon Web Services - A cloud computing platform provided by
Amazon.

BIIGLE
A web service for the efficient and rapid annotation of still images and
videos.

BoVW
Bag of Visual Words - A method for classifying images based on a
Bag of Words classifying model.

BRIEF
Binary Robust Independent Elementary Features - A feature
descriptor standard that improves speed of matching features by
reading straight from binaries.

CATAMI
Collaborative and Automated Tools for Analysis of Marine Imagery - A
classification scheme for scoring marine biota and substrata in
underwater imagery. Also has a tool to assist annotations.

Computer
Vision

A field of study associated with the automated interpretation and
extraction of information from images and videos.

Convolution

A mathematical term for the combination of two functions to form a
third which represents the shape of one modified by the other. In
terms of CNN, the convolution stage is represented by a pixel filter on
images to derive spatial relationships between pixels.

CoralNet
A web service by the same creates as VIAME for organising and
annotating images of coral. It is still under development.

CPU
Central Processing Unit - The main processor in computers. This
favours performing complex calculations in series (as opposed to
GPUs that favour many simple calculations in parallel).

CNN
Convolutional Neural Network - A type of ANN that processes images
through numerous convolutional stages before a classification stage.

Darknet
A bespoke neural network creation platform from the creators of the
YOLO CNN.

DeepSORT
Simple Online and Realtime Tracking with a Deep Association Metric
- A tracking algorithm that combines a variety of tracking algorithms
together with a neural network framework.

DrivenData
A website that hosts machine learning and data analysis
competitions. Hosted the “N+1 Fish, N+2 Fish” classification
competition.

FAST
Features from Accelerated Segment Test - A corner feature detection
algorithm with notably increased speeds over other methods such as

8

SIFT or SURF.

Feature
In the field of Computer Vision, a mathematical description of part of
an image such as an edge or a corner that can be used to build
profiles of objects and content present in the image.

Feature Map
A combination of different features that together build a profile of a
specific object or classification.

FFMPEG
Fast Forward Moving Picture Experts Group - An open source video
manipulation software toolkit.

FishTick
A piece of software developed by Salmonsoft for analysing and
counting fish in dams and weirs.

FRCNN
Faster Region-based Convolutional Neural Network - An object
detection CNN method. This algorithm has efficient region proposals
allowing for highly accurate detections in large images.

Gabor Filters Linear filters used in image processing to determine textures.

Gaussian
Filter

A convolution step performed using Gaussian functions.

Gaussian
Function

A function that forms a characteristic bell curve shape.

Google
Object

Detection API

An open source repository of object detection training and testing
algorithms built with TensorFlow.

GPU

Graphical Processing Unit - An optional processor in computers,
generally used for graphical processes. This favours performing many
simple calculations in parallel (as opposed to CPUs that favour
complex calculations in series).

Haar features
Filters used in image processing to determine whether pixels fall into
particular spatial relationships.

Haar
wavelets

A signal wavelet built up of square shaped oscillations. Can be used
as filters to extract information from pixels.

HOG
Histogram of Orientated Gradients - A feature descriptor in image
processing that measures the sum of various pixel gradients over an
image or ROI.

ILSVRC
ImageNet Large Scale Visual Recognition Challenge - A competition
for object detection algorithms to determine their effectiveness on a
wide variety of objects.

JPEG Joint Photographic Experts Group - A format for saving image files.

Kaggle
A website that hosts machine learning and data analysis
competitions. Hosted the “The Nature Conservancy Fisheries
Monitoring” classification competition.

Kalman
Filters

A filter that estimates the internal state of a dynamic system from a
series of measurements. Used for predicting motion of objects in
object tracking.

KNN
K-Nearest Neighbours - A machine learning clustering method that
describes data in terms of its closest distance to existing cluster
centres.

Marine A Scottish governmental department responsible for growing

9

Scotland Scotland’s marine assets and protecting marine ecosystems.

Marine
Scotland
Science

A division of Marine Scotland focused on providing expert scientific,
economic and technical advice and services on issues relating to
marine aquaculture, renewable energy and environment.

MarynSol

The company contracted by Marine Scotland to perform this study.
MarynSol’s business involves providing marine data analytics,
advanced marine survey, and marine data database and
warehousing.

MOG
Mixture of Gaussians - A machine learning clustering method that
describes data as a combination of various Gaussian profiles.

ORB
Orientated FAST and Rotated BRIEF - A feature detection algorithm
created by OpenCV as an alternative to SIFT and SURF.

OpenCV
Open Computer Vision - An open-source library that provides many
computer vision tools and algorithms.

OpenCV KNN
A background subtraction method in OpenCV that applies KNN
classification to pixels.

OpenCV
MOG2

A background subtraction method in OpenCV that utilises a MOG
method.

Pooling
The act of combining values into a single representative value (e.g.
through averaging or taking a maximum value).

Random
Forest

A machine learning classification tool that takes the weighted output
of many different decision trees.

Rekognition
A platform provided by Amazon for video analysis using a selection of
pre-built models such as object detection and facial recognition.

RFCN

Region-based Fully Convoluted Network - An object detection CNN
method. Uses an alternative region selection method to FRCNN by
splitting the ROI into a 3x3 box. Has comparable speeds and
accuracies to FRCNN.

ROI
Region Of Interest - A subsection of an image that has been flagged
for further analysis.

Salmonsoft The company that produced FishTick software.

SIFT
Scale-Invariant Feature Transform - A feature detector that uses
maxima and minima from a difference of Guassians function.

Squidle
A tool for managing, exploring and annotating images, video and
large-scale mosaics.

SSD
Single Shot Detector - An object detection CNN method. This
algorithm values speed over accuracy and is used in many real-time
image processing tools.

SURF
Speeded Up Robust Features - A feature detector based on the sum
of the Haar wavelet response around blob detections.

TensorBoard
A visualisation tool for TensorFlow that displays training and testing
metrics.

TensorFlow
An open source platform for ANN development and training provided
by Google.

VIAME
Video and Image Analytics for a Marine Environment - An open-
source system for analysis of underwater video and imagery which

10

pulls together a variety of different image analysis tools and
algorithms into one place.

Viola-Jones
framework

An object detection framework built using Haar features and
AdaBoost. One of the earliest successful forms of facial recognition.

YADIF
Yet Another DeInterlacing Filter - A filter to remove the interlacing
effect in some video formats.

YOLO
You Only Look Once - A fast and accurate CNN built using the Darknet
platform. A very popular and widely used algorithm. It is included in the
VIAME software.

11

Introduction

Scottish Government are committed to studying and maintaining the environment

and ecology of coastal waters around Scotland. Monitoring underwater habitats,

such as those around renewable energy and aquaculture sites, is essential in

ensuring the preservation of marine life. Unfortunately, these sites tend to be remote

and inaccessible, limiting the availability of data to analyse them.

Underwater video cameras offer a relatively simple and cheap method to rapidly

collect substantial amounts of data across a wide range of locations for study.

Unfortunately, survey campaigns can generate hundreds of hours of footage which

require distilling into manageable datasets. Manual processing of this footage is

slow, tedious, and is limiting in the amount of imagery that can practically be

processed. Automated and semi-automated analysis algorithms for these videos

have been around for many years in order to extract information, such as the number

or the type of fish present. However, these methods tend to have varying degrees of

success when installed outside of controlled laboratory settings.

Furthermore, capturing high quality video for analysis can be difficult in underwater

environments. The devices can be affected by poor lighting due to the turbidity of the

water. Lenses can become fouled over time due to biofouling or deposition of

sediment, obstructing the view. Additionally, rapid motion of fish in the shot can

produce blurred effects, which further compounds the difficulties with automated

identification of subjects present. There also exist many algorithms that try and cope

with these limitations but, as before, their effectiveness can be variable in real-world

environments.

However, image analysis technologies have been revolutionised recently with

advancements in machine learning and neural networks. This, in combination with

established image processing analysis techniques has the potential to have a

powerful impact in this problem space.

There is considerable immediate potential to make use of such methods for the

automated detection and identification of fish and other fauna in underwater video

material collected in camera boxes connected to trawl nets; during monitoring at tidal

turbines and at wind turbine bases; and at video based fish counters and in the video

validation of fish counters using other technology. Such methods may well allow

effective progress to be made with archived video material which various parties hold

which is waiting for review.

12

In this project, Marine Scotland tasked MarynSol to deliver an overview of the current

technologies and methods for fauna/object identification in underwater video,

alongside the current developing object detection technologies developed within

recent years. Additionally, a test-bed of some of the more promising technologies will

be presented, using video provided, to assess their potential impact on future

research and development.

Objective

The objective of this study is to present the current state of technologies for

automatic detection of aquatic life in underwater video footage, the purpose being to

extract relevant data from these sources without resorting to the large amount of

expert man-hours required to sift through the footage manually. This data could then

be applied immediately to address knowledge gaps in aquatic ecological monitoring,

such as biodiversity tracking or assessing the environmental impacts of aquaculture

farms and renewable energy infrastructure.

This review will present a general overview of the current technologies available

commercially or open source that directly relate to the problem space (i.e. current

software to aid in aquatic fauna/flora detection) and the current direction of

technologies and algorithms in the field of video object detection in general. These

technologies will be investigated in a subsequent case study to determine the

feasibility of adopting them into the current problem space.

Problem space

Although the task of recognising objects in images and video seems relatively

straight-forward for humans to perform, replicating this feat in computers is not so

easily done. Even though it is second nature for humans and animals to see and

interpret the world around them, the actual underlying process that is performed is

not well understood. Therefore, translating it into programming scripts and algorithms

for computers to execute is challenging.

In breaking down the task of analysing aquatic life in video, there are varying levels

of information that could be extracted which involve different algorithms and

approaches. For instance, if taking an example where the objects of interest are fish,

then the tasks could be summed up as follows:

13

● Where are the fish?

○ This involves detecting whether or not the image contains fish and

where they are in the image.

● What type of fish are they?

○ Once the fish has been found, further analysis is required to determine

what type of fish it is, based on the visible features.

○ This step usually requires expert knowledge and experience which can

sometimes be difficult to translate into an algorithm.

● How many fish?

○ To count fish in video, each fish needs to be followed between frames

in order to prevent double-counting.

○ This can quickly become complicated as fish may move erratically and

overlap one another, making tracking difficult for even human

observers.

● How big are the fish?

○ In some cases, fish length can be estimated by comparing the snout-

to-tail pixel distance to a known length in the image. For automatic

measurements, this process requires calibration and also detection of

fish orientation and features.

○ Alternatively, stereo-camera systems can use perspective to estimate

length, but the fish detected need to be identified in two frames

simultaneously.

These four tasks represent classic computer vision problems that have been studied

over the last 50 years. In that time, various approaches and advances have been put

forward, but these problems still remain the focus of a wide array of research

institutions today.

Furthermore, underwater video also presents additional difficulties to the traditional

task of object detection due to the environment in which it is obtained. These include:

● Low light level.

○ Light penetration of water decreases at lower depths. Without

alternative light sources, video taken at these levels can be dark with

low contrast between background and objects of interest. Even when

additional artificial light is used, the scene illumination is often variable,

and optical backscatter effects can be significant.

14

● Colour faded.

○ In the absence of an additional light source, the light that does reach

low depths of high transparency water tends to be blue-shifted, giving

everything a greenish-blue tinge. Additionally, materials dissolved or

suspended in the water can absorb other wavelengths of light causing

variations of colour in salt and freshwater sources. The lack of colour

variation, other than in shallow high transparency water or with

additional lighting, represents a loss of information in the video and can

make object identification harder.

● Blurred elements from rapid motion.

○ High quality video capture underwater is often difficult to obtain.

Lighting levels and standard video shuttering rates can cause motion

blur, and other effects. Both the camera and subjects can be buffeted

by tidal flows or move erratically causing motion blur in obtained

footage. This can conceal features making identification of objects

more difficult.

● Bio-fouling on lens in installed cameras.

○ If cameras are mounted on a permanent or semi-permanent fixture for

extended periods of time, the video imagery can be subject to bio-

fouling as marine growth forms on the lens. This obscures any potential

objects and renders detection and identification much more difficult.

From this, it can be seen that this problem space is highly complex with many

different challenges to tackle. There is not currently a stand-alone algorithm that can

be used to solve all of the above. However, advances in computer vision have

already addressed parts of these problems which will be demonstrated in the

following sections.

Computer vision

Introduction

‘Computer vision’ is a highly interdisciplinary field of study that affects many areas of

research. Extracting information from images automatically allows for automation in

tasks that previously were thought to be only possible by a human controller. From

reading the pieces of a chessboard to allowing a self-driving car to navigate

populated roads, computer vision can be useful in almost any field[1].

15

For this task, the objective is to have a computer automatically review what may be

thousands of hours of footage to count, annotate, and classify objects of interest.

Therefore, the ideal algorithm must be able to first detect an object of interest in a

frame, and subsequently track the same object in following frames to avoid double-

counting. Alternatively, a simpler algorithm could just classify whether particular

sequences of frames in a video probably contains “content of interest”, and flag for

further human inspection. By discarding irrelevant frames, the workload of the

human inspector could be dramatically reduced. However, even the latter of these

options is not a straightforward task. A computer does not necessarily ‘see’ an image

in the same way humans do. Images are stored in computers as arrays of pixel

values, usually with red, green, blue (and sometimes alpha or transparency)

channels. Somehow, these values and the relationship between them need to be

translated into lines and shapes which then need to be further translated into

descriptions of objects to recognise such as animals or plants[1].

Furthermore, computers do not automatically infer context in the same way humans

do. For example, observing only the head of a fish in an image would usually be

enough for a human to perform an identification. The human observer would infer the

remaining part of the fish that is obscured or out of frame. Training a computer to

accomplish the same task would require imparting some form of knowledge and

understanding of what fundamentally constitutes a fish and then performing the

same deduction through a programming script.

There are many approaches to automating detection in images and video, but the

overall task can be generally split into three parts[2]:

● Object detection: Given an image, or a frame in a video, is there an area of

interest in the image and if so, what part of an image does it occupy?

● Object classification: Given an image/frame, or a subsection of that

image/frame, what object (if any) is present?

● Object tracking: Given an object has been found in an image/frame, can the

same object be recognised in a subsequent image/frame?

There exist numerous algorithms that have been proposed over the years that tackle

one or more of the above tasks with varying degrees of success and with varying

ranges of applicability.

16

Feature maps

The fundamental backbone behind computer vision algorithms is that objects present

in images can be summarised and described in the form of ‘feature maps’. A

‘feature’, in the context of object detection, is a mathematical description of a part of

the image that can range from being as simple as a prominent edge or corner, to a

complex convolution process of a set of neighbouring pixels. Different algorithms

adopt different methods for obtaining features, meaning a feature is not necessarily

universal. Some algorithms look for local changes in raw pixel values while others

apply mathematical filters to the image to generate new relationships between these

pixel values. The ‘map’ represents the characteristic features and their spatial

relationship that construct an object. For example, a rectangle is generated by two

perpendicular sets of parallel lines. The features in this case would be the four

separate lines and the map would be the amount of lines and their corresponding

parallel or perpendicular nature. Thresholds can then be applied to determine how

confident the algorithm is that there is a rectangle present.

It is possible to manually construct feature maps to describe objects, although this

rapidly becomes a complex and awkward process as any manner of object

orientations and scales need to be incorporated into the map. Instead, the usual

practice is to allow a feature detector algorithm to extract prominent features from a

set of training examples and derive its own map. If the detector subsequently

encounters a similar set and orientation of features on a test image it can assume it

is the same object.

Algorithms

There are too many algorithms that have been created over the last few decades in

the field of computer vision to investigate and comment on them all individually.

Therefore, only the most prominent and successful ones will be presented here.

Additionally, this report will limit the description of mathematical detail behind the

algorithms to only necessary information, with references provided for readers who

are interested in the mathematics that constitute these algorithms. If a more in depth

look at the recent history of computer vision is desired, Zhang et al. provide a

comprehensive review of the major techniques used in image classification[3].

A list of the more prominent object detection, or feature detection, algorithms are

described below:

Scale-Invariant Feature Transform (SIFT)[4] was considered to be the best computer

vision algorithm in the early 2000s. It creates features by detecting maxima and

17

minima from a difference of Guassians function. It generally performs the best in

benchmark tests against other algorithms of a similar age[5]. However, the algorithm

is patented in the United States, limiting its availability for commercial use.

Viola–Jones object detection framework[6] is one of the earliest frameworks to

provide consistent, real-time detections. It combines Haar features with AdaBoost

training and classification to create a pyramid shaped detection set up whereby

features are ranked by importance. This rapidly eliminates potential regions that are

not similar to the object in question allowing for swift detections to be performed.

Speeded Up Robust Features (SURF)[7] is a faster alternative to SIFT that uses a

different set of feature descriptors based on the sum of the Haar wavelet responses

around a specific blob detection (a region of varying contrast or colour). It also

benefits from utilising the precomputed integral image to speed up the detection of

features. However, like SIFT, this method is patented in the United States.

Gabor Filters[8] look for patterns within an image by passing 2-Dimensional Gaussian

filters and observe regions that have similar frequency responses to known patterns.

This method works well for texture analysis and pattern recognition for object

classification.

Histogram of Oriented Gradients (HOG)[9] is a method that compares colour and

contrast gradient slopes and angles over an image. Features are derived from a

histogram of these gradients that can be compared to expected histograms from

known objects.

Oriented FAST and Rotated BRIEF (ORB)[10] is a method developed by the OpenCV

(Open Computer Vision) library as a substitute for SIFT and SURF as they are

patented methods. This method uses the FAST (Features from Accelerated

Segment Test) algorithm to determine keypoints and then BRIEF (Binary Robust

Independent Elementary Features) algorithm to create feature descriptors. Both of

these algorithms have been modified to improve accuracy in rotated objects.

Neural networks

Until the early 2010s, all advances in computer vision relied on some modification, or

incremental advancement, to one of the techniques in the previous section.

Nowadays, the field has pivoted and almost all computer vision algorithms rely on

neural networks instead.

18

Artificial neural networks

Artificial neural networks (ANNs) are powerful pattern recognition algorithms that are

loosely based on the architecture of a human brain. Various layers of nodes, or

‘neurons’, are interconnected by weighting functions, shown in Figure 1. Each node

takes a weighted input of all outputs from the previous layer and then returns a value

between zero and one based on a sigmoid (or similar) function. This value is then

passed onto every node on the next layer and so on until it reaches the output layer.

Here the value can be converted into a class probability, for classification problems,

or to a value via an external function, for regression problems.

Figure 1: An example of a small, two-layer neural network with two input values (x1, x2) and two
output values (y1, y2). Every black line (45 in total) corresponds to a connection with a trainable
weighted value.

However, for these networks to work, the weighting values for each neuron

connection have to be determined. This is achieved through a training process

whereby known inputs are plugged into the network and the outputs are compared to

the expected outputs. A correction function, called backpropagation, is then applied

to all the weights in the network to adjust them slightly. This process is repeated

numerous times until the outputs match the expected ones.

The concept of ANNs has been around for decades, but the technological

requirements to train and apply them effectively were beyond the capabilities of most

computers until the late 2000s. Since then, almost all machine learning tasks

incorporate some form of neural network, yet there is no single architecture (i.e.

number and size of layers) that applies to every task, and researchers are constantly

developing new methods and orientations.

Convolutional neural networks

Convolutional neural networks (CNNs) are a particular branch of ANNs focused on

deriving features and patterns from an array like input, such as an image. Their basic

structure consists of one or more convolution and pooling steps feeding into a

19

layered ANN, as shown in Figure 2. These convolution stages allow the network to

extract arbitrary features from an image which can then be used for training an ANN

to classify as objects. However, each sample of pixels creates another connection

that requires a weighted value. Therefore, covering an entire image makes training

highly computationally expensive due to the size of the resultant network.

Figure 2: An example of the architecture of a convolutional neural network. The convolutional stage
takes the weighted sum of neighbouring pixels in different configurations and forms new ‘image’
layers from the results. The pooling layer then condenses these layers into fewer ‘image’ layers
through averaging or taking the maximum values. This process can then be repeated multiple times
before flattening the image into inputs for a classification ANN.

Prior to the adoption of CNNs in computer vision, most solutions were built on

variations of SIFT, SURF and other presented in the previous section. Regular

competitions were held to showcase these cutting-edge algorithms by attempting to

identify a variety of objects in thousands of pictures. One of these was the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC)[11]. In the 2012 ILSVRC, a

convolutional neural network called AlexNet[12] beat the runner-up algorithm by an

unprecedented ten percentage points and was the first team ever to score above

75% accuracy. (AlexNet achieved 84.7% precision)[13]. This sparked a paradigm

shift as research focus in the field shifted almost entirely towards CNNs, yielding

dramatic improvements in accuracy over previous algorithms. In the 2017 ILSVRC,

all teams incorporated some form of CNN into their methodology and 29 out of 38

teams scored above 95% precision[14].

As before with the ANNs, there is no single architecture that provides a solution and

researchers are continually developing new ones. The complexity of these models

grows exponentially with researchers combining different types of network together

to form new ones. With that, the computational load to train and execute these

20

networks increases too. Today, researchers rely on the increased computational

output provided by Graphical Processing Units (GPUs) as compared to traditional

Computational Processing Units (CPUs). GPUs are optimised to perform many small

calculations in parallel (such as calculating pixel values for faster graphical

rendering) whereas CPUs are designed to perform more complex calculations in

series. As the updating of weight functions in neural networks is a relatively cheap

task computationally, the training process can be sped up by running it on one or

more GPUs.

Drawbacks to CNNs

Although proven to be very powerful in the field of object detection, there are a

couple of drawbacks to CNNs as compared to the simpler non-CNN based

algorithms. Primarily, the resultant trained model becomes a black-box processor,

meaning it is very difficult to interrogate the model as to why it has provided a certain

output. This makes debugging the system next to impossible. Usual practice is to

generate many models with a variety of parameter inputs and then select the one

that returns the best results.

The correct architecture for a CNN is a topic of considerable academic research and

there is no consistent correct answer, only certain architectures that have been

shown to perform well in certain tasks. Luckily, these can usually be taken and

adapted for other tasks. Sometimes, solutions require a combination of various

different CNN architectures to work in collaboration. Similarly, model performance is

reliant on data provided, but exactly how much and what quality that data should be

is unknown. A general rule of thumb is “more data is better”, but the benefits from

increased data plateau after a certain amount.

Development of a CNN solution tends to involve iterative experimentation to

determine what available technologies and algorithms are suited to the task at hand.

Once a model has reached an adequate level of accuracy, it is deemed acceptable,

even if the underlying reasons for why it is performing well remains unknown. This

overall process can sometimes be considered more of an art rather than a science.

21

Computer vision in underwater video

Introduction

With a wealth of video being produced from various marine environmental and

aquaculture practices, a number of attempts to incorporate automated detection of

aquatic life has been performed over the years.

In particular, fish monitoring and counting are popular focuses for automation tasks.

Examples include fish aquaculture industries looking to improve data acquisition by

incorporating machine learning algorithms into their monitoring techniques[15, 16].

Jovanović et al. demonstrate how to automatically monitor for splashing in fish pens

using surface cameras[17]. Williams et al. were able to develop an automatic

detection and measurement algorithm for fish in a trawl from stereo cameras[18].

However, tracking of individual fish still had to be performed manually.

A report of the 2010 National Marine Fisheries Service Automated Image Processing

Workshop[19] indicated that the direction of computer vision in underwater images

followed the same trends of the time. Most algorithms focused on the current feature

extraction methodologies, such as SIFT or shape contours, which struggled with

complex, non-uniform backgrounds. The workshop mainly focused on fish

identification and classification in images, with only two of the eight presentations

from invited experts discussing identifying other marine life.

Algorithms used in literature

An overview of trends in fish detection as of 2013 is given by Shortis et al.[20]. Even

though it focuses on stereo-video footage, many of the applied techniques would

work on single-camera video as well. It summarises three techniques by Spampinato

et al.[21], Khanfar et al.[22], and Charalampidis et al.[23] and then proposes a general

model architecture based on the more promising techniques. A similar methodology

is incorporated by Westling et al.[24] to measure fish with a stereo camera and

Lantsova et al.[25] for identifying fish in low quality video.

In the papers mentioned above, the typical workflow to identify fish in underwater

video comprises of the following steps:

1. Establish a background by averaging or processing frames without any fish

present.

22

2. Detect regions where a fish might be, generally by using a comparison with

the background frame among other techniques.

3. Check if region contains a fish through a combination of feature comparisons

colour histograms and/or contour fittings.

4. Check if two or more fish occupy the same region in frame (this step is highly

complex and difficult to perform rigorously, therefore it is usually omitted).

5. Classify the type of fish using further feature comparisons against a database

of fish of interest.

6. Measure fish if stereo camera is in use by comparing lengths between head

and tails. Sometimes multiple measurements are averaged due to the

contortion of fish as it swims.

7. Track fish in subsequent frames to prevent multiple counting by predictive

positioning, usually by incorporating Kalman filters.

It can be seen that these workflows follow the general

Detection/Classification/Tracking framework incorporated by most computer vision

algorithms. The feature comparisons are generally performed with a Viola-Jones

object detection framework[26].

Image enhancements, such as colour balancing[27, 28], tend not to be incorporated as

a step in these models. These enhancements generally only benefit the human

interpretation of the image. Background subtraction and feature detection algorithms

generally work by comparing the relationship between pixels. These relationships

are generally preserved in the context of colour histogram stretching[29] and

brightness/contrast enhancement[30]. Similarly, two frames processed using the

same enhancements should display the same foreground/background appearances,

meaning detecting changes for background removal should be the same regardless

of whether it has been enhanced or not. Unless the enhancement applies some

complex, conditional, non-linear filter, they are considered unnecessary in the

context of computer vision.

Convolutional neural networks

In recent years CNNs have also been applied to the task of detection[31, 32] and

classification[33] of marine life with promising outcomes. Modern object detection

23

algorithms allow for both regional detection and simultaneous classification within the

same architecture[34, 35], which would allow for both identification and counting of

aquatic life in underwater video. Initial forms of this have been attempted by tracking

detections in subsequent video frames using SURF features[36] and CNN features[37].

However, the results tracking metrics are not presented clearly so it is unclear how

well these perform.

Many software applications have started to incorporate CNNs and machine learning

into their workflow to facilitate the process of detecting and annotating aquatic life in

images and video. Annotation software such as BIIGLE, CATAMI, and Squidle

incorporate some form of automated object identification or classification[38].

However, these applications are primarily designed for images and not video.

The automated processes in CATAMI and Squidle focus on classification of images

or other media via suggestions, but actual annotation has to be performed manually.

They also serve as a repository for storing data and allowing further collaboration

with other researchers. BIIGLE contains a CNN to detect potential objects of interest

automatically in the image set provided. Rather than classifying the image, this

method actually detects and bounds the objects as well. Refinement and

confirmation of the detection also has to be performed manually. CoralNet is another

web-based software for classifying images of coral reefs and other biological

growths[39], which also has an inbuilt CNN classifier to assist annotation of images.

This was shown to be effective in assisting with assessing biodiversity of offshore

pipelines in the North Sea[40].

FishTick is a software system built by Salmonsoft which is used for fish counting in a

variety of locations. The current version of the software only allows for automated

tagging frames to be subsequently reviewed by an operator to count the fish

manually. In 2016, they developed a machine learning feature to automatically detect

and measure fish passing through video. Unfortunately, this has not currently been

brought forward into development and is not available in their current version (v3).

The developers have stated than in their upcoming version 4.0 they will offer an

embedded hardware solution to process object detection and tracking, with the end

goal being for the system to be able to classify species, detect features and perform

fully automated counting.

The developers of CoralNet have also developed an all-inclusive environment for

allowing researchers to develop computer vision pipelines for their data, called

VIAME (Video and Image Analytics for a Marine Environment). This platform hosts a

variety of algorithms that can be used to detect and annotate images and video and

24

also measure subjects. There is a modular framework that allows for customisation

of workflows and once models have been trained, the process can be automated.

Whilst still under development, VIAME holds a lot of potential for addressing this

problem space.

Competitions

In 2017, two online competitions were held by the US Nature Conservatory

concerning the detection and classification of fish in video. The first, called “The

Nature Conservancy Fisheries Monitoring”, hosted by Kaggle and with a prize pool of

US$150,000, aimed to identify what type of fish (out of a selection of six) were

present in each frame from the video footage from a variety of boat cameras[41]. The

second, called “N+1 fish, N+2 fish”, hosted by DrivenData with a prize pool of

US$50,000, aimed to identify, count and measure the length of fish discarded by

New England trawling vessels[42]. In both competitions, the footage used comprised

of a variety of different boats and viewing angles which had to be taken into account

by the algorithm.

The latter of these competitions, “N+1 fish, N+2 fish”, went on to publish the five

winning entries in an open source format[43], allowing an insight into the current top-

of-the-range algorithms used for these types of tasks. All five of these entries

incorporated CNNs into their algorithms, although their approaches to the task varied

greatly. For instance, the winning entry first implemented a CNN to identify the ruler

used to measure fish in the frame, and then subsequently used another CNN to

identify and measure fish on images reoriented about this ruler. The second-place

entry, however, searched for the fish directly in each frame, and then used

subsequent CNNs to extract information on a cropped augmented image of the fish.

Additionally, the architecture of the CNNs themselves varied between entries,

demonstrating that there is not necessarily a singular approach to this problem

domain. The second-place entry included a flow chart of their methodology, shown in

Figure 3. This entry incorporated twenty neural networks of four different types into

their final algorithm for detecting, counting and classifying fish.

Accuracies for the winning entry were given as follows:

“The winning algorithm alone achieved above 90% identification accuracy across 5

of 7 species, and 99% accuracy for three species. Meanwhile, predicted counts were

within just 1 fish – on an average of 44 fish per video – 83% of the time, and the

average error in length was under 2%.”

25

This demonstrates that these methods, although intricate and powerful, are not

currently 100% accurate, especially for tasks that involve a large range of

parameters. In controlled environments, such as identifying and counting fish on a

conveyor belt, simpler algorithms can yield >95% precision[44]. However, these tend

to be very task specific and lack the versatility offered by the competition algorithms

that had to deal with varying camera locations and lighting effects.

Figure 3: A flow chart describing the methodology for the second place entry in the “N+1 Fish, N+2
Fish”. This methodology incorporated 20 CNNs for identifying and classifying fish in the videos.
Classifying and Training coloured boxes added by the current author. Original image taken from
https://github.com/drivendataorg/n-plus-one-fish/tree/master/2nd-place.

Review of models for case study

Introduction

In addition to presenting the current technologies available for this problem space,

the objective of the case study is to demonstrate the available algorithms in a

working environment. Although research publications present methods that are

successful in detecting fish in underwater video, it is rare to find them available in an

open-source or in a ready-to-use format. Additionally, the results they present tend to

https://github.com/drivendataorg/n-plus-one-fish/tree/master/2nd-place

26

be specific for the environment in question and do not necessarily represent a

general-purpose solution. Therefore, this case study will attempt to produce a

methodology that is accessible and can be recycled for further use by aquatic

researchers.

To make it accessible, and due to the short timeframe of the project, it was decided

that focus would be put on currently available open-source solutions to allow the

rapid generation of simple working end-to-end pipelines upon which tests can be run.

These pipelines are relatively simple compared to competition winning methods,

shown in Figure 3, that are highly specialised to a single task, therefore, they serve

to illustrate what can be performed and indicate what technologies are suitable for

further development.

Available platforms not incorporated into case study

There are a number of other open-source platforms available that could have been

used in this case study, but these were not trialled, due to limitations in their method

or complexities in their acquisition.

FishTick

Although widely used, FishTick by Salmonsoft was not included here due to the

current version not possessing the ability to automatically count targets. Various

sources and video demonstrate its frame tagging capabilities in a narrow, controlled

environment but the methodology is not flexible and is only suited for a specific task.

Although the developers indicate that new machine learning tools will be

incorporated in the future, they were not available for this case study.

BIIGLE

BIIGLE is a web-hosted platform that only requires a registration to access.

Unfortunately, it does not support hosting data without specific permissions, so that

task has to be performed by the user which is not always simple, especially with

sensitive data. Once data is hosted and accessed through the BIIGLE interface,

annotation is simple and straightforward. Accessing the neural network annotation

assistant is also straightforward but the actual processing that is performed is hosted

on a separate server. Simple tests of a few images then took multiple hours to return

with annotation suggestions, with multiple iterative steps required in between.

Although the suggestions were good, the time that would be required to process

hundreds of frames of video makes it inadequate for this task.

27

VIAME

VIAME appears to be a platform to host all the different pipeline tasks in a single

location, with interface tools designed to assist in all forms of annotation and

identification. However, the installation of the software was not straightforward and a

suitable version of the software could not be obtained. From the tutorial videos, the

interface looks highly dense in that there are many required options and selections

required to perform tasks such as annotating data and training a CNN. This software

is still under development and so these steps may be simplified in the future but it in

its current state it does not appear accessible to an untrained user.

Online service portals

There are various portals online provided by companies like Amazon, Google and

Microsoft that allow training and managing object detection and classification

networks by supplying images and data alone, extracting out the complexities

involved with developing and training the CNNs. However, these were avoided due

to the monetary cost associated with training and subsequent analysis of a large

number of images when free alternatives exist. The Rekognition tool from Amazon

allows for video analysis without prior decomposition into individual frames, but it

only allows processing using provided algorithms, such as facial recognition, and not

custom trained models. However, the cloud computing platform, Amazon Web

Services (AWS), was utilised in the case study to expedite processing times.

Chosen platforms for case study

This section outlines the various platforms and algorithms that were incorporated into

the case study. As mentioned above, the feature detection algorithms chosen for this

case study represent those that could be easily incorporated into a working pipeline.

For the sake of balance, it was also decided that versions of older algorithms, such

as SIFT and SURF, should be included alongside the more modern CNN algorithms.

However, it would be an inefficient use of time and resources to attempt to create

custom versions of these algorithms so it was necessary to seek out and adopt

available, open source implementations.

Open CV

The OpenCV (Open Computer Vision) library contains a wide variety of processing

tools for image manipulation and computer vision, including implementations of SIFT

and SURF (however, since these are patented, they are only supported until

28

OpenCV version 3.4.2.16, which was used in this case study). Due to the open

source nature of the library and the Python code interface it offers, OpenCV provided

an efficient platform on which to build quick and simple workflows for image

processing and object detection. In addition, due to the SIFT and SURF algorithms

being patented, OpenCV offers a similar, but open source, variation of these

algorithms called ORB (Oriented FAST and Rotated BRIEF). These three feature

detection algorithms were chosen to compare against the CNN algorithms.

Object detection API (TensorFlow)

For the CNN implementation, TensorFlow by Google offered a wide range of

capabilities for developing machine learning models and pipelines. Additionally,

researchers have created an Object Detection API[45] to facilitate rapid production

and prototyping of certain models with many examples to choose from, making it

easy to implement into our working pipeline. This is similar to the approach

performed by Piechaud et al.[35]. Using TensorFlow as a platform, three types of

CNN were chosen to take forward to the case study. The first, Faster Region-based

Convolutional Neural Networks (FRCNN)[46], is considered to be one of the more

accurate networks available but tends to have a slower performance speed. The

second, Single Shot Detector (SSD)[47], is a very fast network, used mainly for

detecting objects in live video, but suffers from lower accuracy. The third, RFCN

(Region-based Fully Convolutional Networks)[48], claims improved accuracy from

FRCNN with comparable performance speed.

The Object Detection API hosts a number of these models (known as a model ‘zoo’)

from which we can download pre-constructed versions of these models. There are

various versions of each model type to choose from, so versions that represent a

balance between speed and accuracy were chosen. The specific models chosen are

listed in Table 1.

Table 1

The names of the CNN models chosen from the Google Object Detection API model zoo found at
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_
zoo.md.

Model Object Detection API Name

FRCNN faster_rcnn_inception_v2_coco
SSD ssd_inception_v2_coco

RFCN rfcn_resnet101_coco

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

29

A notable omission from the chosen networks is a CNN called YOLO v3 (You Only

Look Once)[49] which has demonstrated both high speed and accuracy in a variety of

tasks. It is also the algorithm incorporated into the VIAME processing toolbox.

Unfortunately, the developers implemented this CNN in their own proprietary

software format, called Darknet, which was incompatible with the TensorFlow

pipeline platform and would have been too complex to train and implement

independently within the scope of the project. Future research should certainly

incorporate this algorithm into any tests performed.

DeepSORT (object tracking)

While various object tracking algorithms exist in OpenCV using a variety of methods,

preliminary testing showed that none of them could match the capabilities provided

by a third-party algorithm called DeepSORT[50] (which is not included in OpenCV).

The DeepSORT algorithm combines a multitude of tracking algorithms, such as

Kalman Filters, with a neural network to keep track of detected objects, and it refines

its predictions based on frame by frame detections. This method works well retaining

the detection if objects became obscured and recognising objects across multiple

frames if the detection algorithm failed.

Feature detection training -pipelines

The chosen feature detection algorithms all required training on the data that was to

be used in the case study. This involved two steps: converting the provided videos

into trainable image sets and annotations, and creating the pipelines for the training

algorithms.

Extracting images and annotations

A couple of hundred frames that contained the objects in question were extracted

from the videos as images using the open source video conversion tool, FFMPEG.

Due to interlacing in the videos causing a combing effect, as seen in Figure 4, a

deinterlacing filter, called YADIF (Yet Another DeInterlacing Filter), was applied as

these images were extracted.

30

Figure 4: Left: an example extracted frame depicting the combing effect that appears from unfiltered
interlaced video. Right: the same frame after filtered using YADIF filter in FFMPEG.

These images were then inspected and annotated manually using custom software

to produce locations of objects of interest. This involves describing a box that

identifies the pixels in the image that contain the object of interest, usually in some

form of [X, Y, width, height] as shown in Figure 5. The best practice involves

depicting the object of interest in a variety of positions, scales, and backgrounds, and

in some cases having certain features obscured. This can help prevent overfitting of

training data where the models do not generalise the features and therefore cannot

predict well in practice. Around 200 images of aquatic flora/fauna appear to be

sufficient for training[35]. There exists a multitude of programs for performing this

annotation step open-source (such as LabelIMG and LabelMe) which could have

been used in place of the custom software developed for this task. However,

creating this software allowed rapid interfacing with the following sections of the

training pipeline.

31

Figure 5: Left: An example of a bounding box annotation of a fish. The data for the box is stored as
an [X, Y] coordinate in pixels representing the top-left corner of the box, along with the width and
height of the box in pixels. Multiple boxes can appear in a single image. For improved training,
multiple examples of the subject should be given in a variety of poses. It is good practice to get the
subject at different orientations, with different levels of obstruction, and at different scales, as shown
in the bottom row. Right: An example of the custom annotation software used in action, tagging the
pixels in a frame that represent an instance of a salmon smolt.

This step involves the most manual intervention from the user in the pipeline, but it

only has to be performed once for each dataset. All existing feature detectors, even

those outside the focus of this study, use a similar input format making the resultant

annotated datasets valuable for reuse. A recommended action should be to

document and store created image/annotation pairs in a database. Platforms such

as BIIGLE and CoralNet are offering this as a service so that data can be transferred

easily between researchers around the globe and more powerful models can be

trained.

Training pipeline: Bag of visual words

The SIFT, SURF, and ORB feature detectors cannot classify by themselves and

require a framework to convert their outputs into recognisable and trainable features.

To accomplish this, a custom pipeline using a Bag of Visual Words (BoVW)

methodology was created.

The BoVW method is based on the ‘Bag of Words’ method for classifying text

documents. If a document is broken down into its individual words, then they can be

classified based on the occurrence and frequency of certain words. In the case of

32

“visual words”, descriptive features of an image, such as edge shapes and colours,

take the place of the words.

Figure 6 gives an overview of the BoVW method used in this case study. To train this

model, the feature detectors first sample all the examples (along with some null

examples of only background) and extract feature vectors from each. These are then

clustered in a K-Nearest Neighbours (KNN) classifier to create standard ‘words’. This

set of standard ‘words’ then forms the feature ‘dictionary’ from which all features will

be defined. For each example (and null example), the detected features are then

classified in the KNN classifier and the number of words are counted in a histogram.

This histogram forms a feature vector of the example.

Figure 6: A summary of the Bag of Visual Words (BoVW) model used in this case study.

At the same time, three similar feature vectors are formed using histograms of pixel

colour values in the red, green, and blue channels from the example image. These

form feature vectors describing the colour of the object in question.

The four vectors are combined and fed into a classifier (a Random Forest network in

this example) which is trained to distinguish between vectors belonging to the

examples and those that do not. Once trained, any example image can be

processed by creating the feature and colour histograms and passing that through

the classifier.

33

Training pipeline: Convolutional neural networks

Training a CNN from scratch requires substantial computational time and data in

order to create weights in the initial convolution stages of the models. However, it

has been shown that the feature weights trained by a model on certain generic

objects (such as cars and people) can be reused to classify other objects. Therefore,

only the classification stage at the end of these models requires re-training if they are

to be repurposed. This is known as ‘transfer learning’.

The Google Object Detection API already contains a basic pipeline for re-training

CNNs via transfer learning with custom annotated data. Minor additions were added

in order to streamline the process. This resulted in a single step for training these

models which was to curate the example images and annotations into a single folder

and then execute the provided training code.

Although transfer learning is faster than training all levels of the CNN, to achieve

sufficient accuracy, models had to be left to train overnight on a laptop. This process

could have been quickened substantially by incorporating a GPU enabled laptop or

cloud instance. However, these were not available during this stage of the case

study.

Unlike the custom BoVW training, the CNN training is iterative and various levels of

progress can be visualised in the TensorBoard suite, also provided by Google. This

allows for early termination of training if it can be seen that there has been no

improvement over the last few iterations.

Object detection pipeline

This section outlines the framework for the object detection algorithms once the

feature classifiers have been trained. An overview of the algorithm is presented in

Figure 7 and a more detailed flowchart is shown in Figure 8. Each entry in Figure 7 is

described in more detail in the following sections.

Frame extraction

OpenCV contains a tool for reading videos frame by frame which is used to convert

the video to processable images as needed. However, some video is saved in an

interlaced format which creates a combing effect (as shown in Figure 4) when read

directly. Therefore, the video has to be deinterlaced initially to allow for processing

34

which is outside the capabilities of OpenCV. Instead, the whole video needs to be

converted using FFMPEG and the YADIF filter.

Background subtraction

Two methods from OpenCV were used to perform the background subtraction:

OpenCV MOG2 and OpenCV KNN. Both these models operate by taking a sample

previous frames and developing a predictive model for background pixels, a Mixture

of Gaussians (MOG) model in the former and a K-Nearest Neighbours (KNN) model

in the latter. Foreground pixels are those which fall outside these predictive models

which are constantly updated as frames progress. OpenCV MOG2 worked best with

a static background, such as the fish trawl video, when adopted with a large history.

However, it did not function well on a moving background, such as the seabed rig.

Instead, OpenCV KNN performed much better on the moving background with a

short history but not well on the static background.

Figure 7: An overview of the object detection pipeline used in this case study.

35

The output of the background subtraction algorithms was generally noisy so further

filtering was applied to reduce this. The number and frequency of the filters were

determined through a manual trial and error method with various combinations of

filters. Once the output appeared sensible, this process was fixed for the remainder

of the case study. An initial median filter (9x9) was applied to remove noise specks,

followed by five loops of dilation (5x5), closing (7x7), erosion (5x5), then opening

(7x7) to close gaps in the remaining regions (the numbers in brackets represent the

pixel kernel size for the operation).

ROI thresholding

The remaining regions underwent an additional thresholding to determine whether

they were of sufficient size to pass onto the feature detection stage. This again was

an arbitrary choice through trial and error to obtain a good balance of region de-

selection. The minimum height and width of a region both had to be at least ten

pixels in length in addition to the total rectangular area being greater than 200 pixels.

If the region passed thresholding, an extra 20 pixel boundary was added to the

region prior to passing it to the feature detector to ensure all elements of the object

were included in the region.

Feature classification

One of the five pre-trained feature classifiers are applied to the image, the 3 BoVW

models (SIFT, SURF or ORB based), or the three CNNs (FRCNN, SSD, RFCN). In

the case of the BoVW models, all of the remaining regions are passed individually to

the classifier to determine whether the region contains an object of interest.

However, in the case of the CNNs, each one contains its own method of ROI

selection, therefore the regions created from the background subtraction and

subsequent thresholding are discarded. In these cases, they only serve to determine

whether a frame is worth investigating or not. In the absence of any regions of

interest, the CNN would not be called to save time as it is computationally expensive.

The resultant regions containing objects of interest (if any) are then passed onto the

object tracker.

Object tracking

The DeepSORT algorithm was attached to the end of the pipeline to assess

detections and track objects of interest between frames. In addition, a frame tagging

36

system was implemented to log times when objects of interest are detected for future

manual inspection by a person. Although not a fully automated counting system, this

method would dramatically reduce the work time of manual inspection by eliminating

the majority of unnecessary frames. To filter out many false positives from debris, a

second of footage is only tagged if it contains a detection in a minimum of three out

of five sequential frames.

Figure 8: A detailed flowchart of the algorithms and programs used in the object detection pipeline.

Case study

This section describes the execution and results of the case study. Various video

clips were extracted for analysis by the different models described in the previous

section. Both quantitative and qualitative analysis is provided to describe the

effectiveness of the tested models. Only a short amount of video data could be

analysed in the timeframe permitted, therefore, this case study serves as a feasibility

study into the effectiveness of current computer vision technologies in this problem

space, rather than providing a final solution to the problem.

37

As mentioned in the previous section, only algorithms that could be integrated rapidly

into the pipeline were taken forward to the case study, meaning there may exist

more advanced versions that would perform better in these scenarios. Additionally,

the quantitative results depicted here are only a representation of the performance of

the models and should be used as an indication of their potential rather than exact

benchmarks. Variations of training data quantity and quality, as well as variations in

model architecture, might serve different scenarios better or worse.

Training models

All models were trained on frames not included in the case study videos. A

combination of ~300 frames from various videos were combined for each model.

Frames were extracted from the videos using the open source software FFMPEG

using the YADIF deinterlacing filter and saved as JPEG images. For the CNN feature

detections, the frames and images were automatically reduced to have a maximum

dimension of 1024 pixels, except for the SSD model which has a maximum

dimension size of 300 pixels.

For training the CNNs, the frames were randomly split 70%/30% into training and

testing sets respectively in order to prevent overfitting of the data. Training progress

is monitored by applying the current model iteration to the training set and assessing

the accuracy. The model is considered trained once this accuracy plateaus. To

achieve this, the models are individually left to train overnight.

For the BoVW model, the same 70% of data is applied for training but does not

undergo multiple iterations and therefore the 30% testing data is not used. Training

of the BoVW models were completed within 10-15 minutes.

However, the BoVW models generally returned high numbers of false positives on

areas that were not objects of interest. This included areas such as a bright reflection

off the netting and the clock time printed on the frame. To rectify this, sections of

video with no objects were processed with the BoVW model and all instances of

false positives were saved. These were added to the training data and the BoVW

model was retrained to refine the classification step to ignore these regions.

Detection measurements

The various models were run on each of the videos independently, with each

generating listed outputs from the frame tagging and DeepSORT algorithms.

38

Additionally, an annotated video visualising the detections was produced for each

model to manually determine the accuracy of these outputs.

In each case the number of true positives (TP) indicate correct counting and

identification of objects in video. False negatives (FN) indicate objects that should

have been detected but were missed. False positives (FP) indicate instances where

wrong frames were tagged or wrong objects were tracked. In the case of the

DeepSORT algorithm, there were instances where object tracking was lost and then

reassigned a new value, creating multiple counts (MC) for each object.

In addition, overall metrics are used to compare the performance of each model.

These are the measures of ‘precision’ and ‘recall’ which are given in Equations 1 & 2

respectively. Precision represents how sensitive a model is to similar looking objects,

and recall represents how well the model is able to detect objects in the

environment. These were measured using the total counts across all of the five

videos.

Precision = TP / (TP + FP) Recall = TP / (TP + FN)

Equation 1: Precision accuracy,
given by percentage of positive
instances detected out of the total of
all positive detections (both true and
false).

 Equation 2: Recall accuracy, given
by percentage of positive instances
detected from all possible true
instances.

Fish detection, classification and counting

A large proportion of research for computer vision in underwater environments goes

to fish counting and fish species identification. For the case study, models were

trained primarily to identify and count Atlantic salmon (Salmo salar) smolts passing

through a camera box attached to a specially designed, near-surface trawl net.

Various other animals and debris are also present, so it is important that the model

can detect and track smolts specifically. Furthermore, the models were

simultaneously trained on two types of fish, smolts and European sprats (Sprattus

sprattus), shown in Figure 9, to determine whether the models could distinguish

between them.

39

Figure 9: Left: an example frame showing the background of the trawl video used for training and
testing. Right, top: An Atlantic salmon (Salmo salar) smolt, the main fish of interest in this case study.
Right, bottom: A European sprat (Sprattus sprattus) used for testing the classification capabilities of
the models.

The trawl videos were recorded by Marine Scotland Science on board both the RV

Scotia and the fishing vessel Sunbeam FR487 during several research voyages to

capture salmon smolts over a period between 2017-2019. Trawls took place on the

east coast of Scotland, from south of the Firth of Forth to near Orkney. This work

was undertaken to attempt to identify salmon migration routes in the context of the

development of marine renewable energy.

For training the fish detection and classification algorithms, frames were extracted

from the available footage contained either smolts, sprats or neither. Smolts and

sprats were given separate classes for the purposes of classification upon detection.

A set of six short videos were extracted from the available footage (that did not

contain any training frames) to assess the performance of the various models,

shown in Table 2. Although Video 6 contained too many fish to accurately count

manually, this video only served for testing processing speeds for large numbers of

objects and the classification accuracy of models so the exact number of fish present

was not needed.

40

Table 2

Video segments used for fish detection and counting model comparison. Processing Times.

Video
Length

[mm:ss]
Flora/Fauna

Objects
(manually
counted)

Notes

1 01:00 Smolt 1
Single smolt but appears only on 5

frames. Rest of video is clear.

2 01:00 Smolt 1
Single smolt over ~10 frames. Rest

of video is clear.

3 01:00 Smolt 2
2 individual smolts sightings.

Moderate amounts of debris in rest
of video.

4 01:00 Smolt 6
2 individual smolts sightings.

Moderate amounts of debris in rest
of video.

5 00:15 Smolt 12
Many smolts passing through

simultaneously. Testing tracking
accuracy for counting.

6 00:10 Sprat Many
Many sprats passing through (too
many to count manually). Testing

fish classification accuracy.

For Videos 1-6, all processing times for each BoVW and CNN algorithm were

benchmarked on a GPU enabled laptop (Laptop specifications: Intel Core i7-7700HQ

CPU @ 2.80GHz, 16GB DDR4 RAM @ 2400MHz, GeForce GTX 1050 Mobile

GPU). Additionally, the CNNs were also benchmarked on an AWS cloud instance

(AWS Cloud Instance specifications: 6 vCPU custom Intel Xeon Scalable Skylake @

2.5GHz, 61GB RAM, NVIDIA Tesla V100 GPU). The results for these benchmarks

are shown in Figure 10.

For Videos 1 & 2, processing times across all models are similar. This is due to the

fact many frames were empty, meaning the feature detectors were not run and the

overall processing was similar in all cases. However, in Videos 3 & 4 the processing

times start to diverge as there was more debris and objects in the frames triggering

more instances of the feature detection process. This is most notable in Video 6

where processing times were generally multiple times the length of the video in all

cases due to every frame contain many objects to track.

41

Figure 10: Process times for the various algorithms running through the case study videos. For the
CNN algorithms on the left, the times cloud times denote the processing time running on an AWS
cloud instance. All other times were measured when running on a GPU-enabled laptop. The FRCNN
and RCFN speeds were improved when using a more powerful cloud instance; however, the SSD ran
slower. This is most likely due to the model not being optimised for that environment.

The processing times for the BoVW models is generally longer than the CNN

models. This is most likely due to the fact the BoVW models are not optimised for

GPU operations and do not take advantage of the hardware. For the CNNs, the

RCNN and RFCN models performed better on the cloud instance whereas the SSD

model performed slightly worse. Again, this might be due to the SSD model not

being optimised for performance on the cloud hardware. However, on the laptop, the

SSD model performed the fastest.

No model was able to complete the analysis faster than the length of the video. This

means that live analysis of this footage type would not be possible using these

pipelines. However, the computation time could be reduced by skipping frames or

running multiple instances of the pipeline in parallel. The current CNN methods are

limited to running on a single GPU instance; increasing the number of processors

does not improve performance. However, if designing these networks from the

ground up, it would be possible to include the option for more parallel processing that

would potentially enable real-time analysis.

42

Detections

Videos 1-5

Figure 11: Fish detections in Video 1-5 using the FRCNN model. Detections from this CNN are
shown as green boxes. The white boxes are from the DeepSORT tracking algorithm. The green
number refers to the DeepSORT identification given to the tracked instance and does not necessarily
reflect the count of instances.

As the background of the trawl videos remained predominantly static, the OpenCV

MOG2 background subtraction method was used. The detection pipeline shown in

Figure 8 was implemented with both frame tagging and DeepSORT tracking

operating simultaneously.

Examples of processed frames are shown in Figure 11. The detection results for

Videos 1-5 are given in the tables above (Table 3 - Table 7). Additionally, the overall

metrics for each model over these five videos are given in Table 8.

In terms of frame tagging, all the CNNs had no false positives and so scored 100%

precision. The FRCNN and RFCN models also scored 91% and 95% respectively for

frame tagging recall displaying an almost perfect solution to this problem. The SSD

showed much lower recall most likely due to the low pixel resolution it uses. The

FRCNN model also scored highly for the DeepSORT tracking algorithm whereas the

RFCN did not. This was due to the fact the RFCN model kept dropping detections

every few frames, meaning that, although the frames were tagged, the DeepSORT

algorithm could not track the instances effectively.

43

VIDEO 1
Detections

VIDEO 2

Detections

Model

Frame
Tagging

DeepSORT
Tracking

Model

Frame
Tagging

DeepSORT
Tracking

TP FN FP TP FN FP MC TP FN FP TP FN FP MC

CNN

FRCNN 1 0 0 0 1 0 0

CNN

FRCNN 1 0 0 1 0 0 0

SSD 1 0 0 0 1 0 0 SSD 1 0 0 1 0 0 0

RFCN 1 0 0 0 1 0 0 RFCN 1 0 0 1 0 0 0

BoVW

SIFT 1 0 8 0 1 6 0

BoVW

SIFT 1 0 0 1 0 0 0

SURF 1 0 3 0 1 2 0 SURF 1 0 0 1 0 0 0

ORB 1 0 0 0 1 0 0 ORB 1 0 0 1 0 0 0

Table 3: Video 1 detection results. Table 4: Video 2 detection results.

VIDEO 3
Detections

VIDEO 4

Detections

Model

Frame
Tagging

DeepSORT
Tracking

Model

Frame
Tagging

DeepSORT
Tracking

TP FN FP TP FN FP MC TP FN FP TP FN FP MC

CNN

FRCNN 2 0 0 2 0 0 0

CNN

FRCNN 5 1 0 4 2 0 1

SSD 2 0 0 2 0 0 0 SSD 4 2 0 2 4 0 3

RFCN 2 0 0 2 0 0 1 RFCN 5 1 0 4 2 0 2

BoVW

SIFT 2 0 14 2 0 6 0

BoVW

SIFT 5 1 16 4 2 8 1

SURF 2 0 9 2 0 3 0 SURF 5 1 9 3 3 5 1

ORB 2 0 0 1 1 0 0 ORB 3 3 1 2 4 1 0

Table 5: Video 3 detection results. Table 6: Video 4 detection results.

VIDEO 5
Detections

Model
Frame

Tagging
DeepSORT
Tracking

TP FN FP TP FN FP MC

CNN

FRCNN 11 1 0 9 3 0 2

SSD 6 6 0 4 8 0 2

RFCN 12 0 0 6 6 0 4

BoVW

SIFT 8 4 3 7 5 1 2

SURF 8 4 0 8 4 0 3

ORB 2 10 0 1 11 0 0

Table 7: Video 5 detection results.

The BoVW models did not perform well, with multiple false positives, in the case of

SIFT and SURF, and false negatives, in the case of ORB, in both frame tagging and

object tracking. The false positives from the SIFT and SURF were mainly focused on

some netting in the background reflecting light as it moved. Further refinement might

have been able to address this and improve the precision of these models.

44

Table 8

Overall precision and recall results for each model in Videos 1-5. For the purposes of overall
precision, instances of multiple counts (MC) are considered false positives (FP).

Tracking Algorithm
CNN BoVW

FRCNN SSD RFCN SIFT SURF ORB

Frame
Tagging

Overall
Precision

100% 100% 100% 29% 45% 90%

Overall
Recall

91% 66% 95% 77% 77% 41%

DeepSORT
Tracking

Overall
Precision

84% 64% 65% 37% 50% 83%

Overall
Recall

73% 41% 59% 64% 64% 23%

Video 6 - Classifying sprats vs smolts

All models were trained with two possible fish types to classify, smolts and sprats. In

Videos 1-5 all instances of fish were smolts. The models all correctly identified the

smolts in these videos save for the occasional frame. In Video 6, all instances of fish

were sprats, which can be seen in Figure 12.

Figure 12: Fish detections in Video 6 with only sprats present using the RFCN model. Detections

classed as sprats are shown in blue boxes, whereas detections classed as smolts are highlighted in

green. It can be seen that the number of fish present in the video makes accurate counting and

tracking very difficult.

Table 9 shows the number and percent of sprats correctly identified in Video 6.

There were too many sprats in the short segment of video to correctly count the

number present. However, due to the density of fish, it is assumed that there are no

false positive identifications. The BoVW models all struggled with this task with low

numbers of detections and at least two thirds of these mislabelled. The SSD model

had a low detection rate but high precision in classification. The RFCN model

performed the best scoring the second highest number of detections whilst also

45

achieving 98% classification precision, demonstrating that classification of types of

fish under these conditions is feasible.

Table 9

The number of detections and sprat classification percent for each model in Video 6.

CNN BoVW

FRCNN SSD RFCN SIFT SURF ORB

Number of
Detections

557 217 463 366 290 55

Percent
Identified as

Sprats
79% 95% 98% 32% 31% 15%

In the preliminary studies, where the models were only trained on instances of

smolts, the video segments with sprats generated many false positives as the model

considered them too similar to smolts. By training on two types of fish, these false

positives have now been converted into correct classifications. This result not only

shows that the CNN models are capable of distinguishing between different types of

fish based on example data alone, but demonstrates that for accurate detection

models to work, prior knowledge of the types of fish expected to be present is

required. That way, the model can be trained to distinguish between them and

generate fewer false positives.

Sea pen detection and counting

Another common application of video data collection and inspection in aquatic

environments involves identifying and counting species found in stretches of footage

along reefs or seabeds to determine the levels of eco-diversity present and how that

changes over time[51]. For this case, footage of phosphorescent sea pens (Pennatula

phosphorea), shown in Figure 13, were used to determine how well the model

pipelines performed in this different scenario.

The sea pen video was collected by Marine Scotland Science in May 2015 on board

the MRV Scotia. The video was recorded approximately 90 km due east of Kinnaird

Head in the northern North Sea. A drop-frame TV camera system was towed behind

the vessel at ~1 knot. A digital stills camera (Canon) was mounted on the drop-frame

together with a high definition and standard definition video (Kongsberg Simrad). The

drop-frame was suspended 1 m above the seabed, guided by a steel weight

attached by a line to the drop-frame. Maintaining the steel weight (63.5 mm

diameter) on or just above the seabed ensured the correct height for accurate

focusing of the video and digital camera. Video was recorded continuously together

46

with digital photographs taken at one minute intervals for the duration of the transect.

Two laser pointers set 68 mm apart provided a scale for identifying features.

Figure 13: An example of the phosphorescent sea pen (Pennatula phosphorea) which was the

subject of interest in this video.

For training the sea pen detection algorithm, the supplied high-resolution images

were used in conjunction with frames extracted from the first minute of test footage.

In the case of the sea pen data, images and video were of much higher quality than

the other cases. The images had 3648 x 2736 pixel resolution and the video was

1920 x 1080 pixel resolution whereas the resolution of the videos used in fish

detection were only 720 x 576 pixels. This meant that parts of the pipeline struggled

to handle the large quantities of data.

A single one minute video segment (that did not contain any training frames) was

analysed to assess the performance of the various models in detecting sea pens,

shown in Table 10.

Table 10

Video segment used for sea pen detection and counting model comparison.

Video
Length

[mm:ss]
Flora/Fauna

Objects
(manually
counted)

Notes

S 01:00 Sea pen 45

Many sea pens on the seabed of
varying sizes. Occasional dust

clouds obscuring vision
temporarily, otherwise generally

clear.

Detections

47

As in the previous videos, the detection pipeline outlined in Figure 8 was

implemented to identify sea pens in this case example. However, unlike the static

background of the fish trawls in Videos 1-6, the background in Video S was a moving

sea floor. Therefore, the OpenCV KNN background subtraction was used instead.

Unfortunately, as the video resolution was high and there were many moving

objects, every frame contained multiple potential targets. This meant the BoVW

models returned hundreds of false positives which did not improve with refined

training and the CNNs were run on every frame. Additionally, due to the high-

resolution of each frame, the processing time was multiple times longer than the

video length, even when running on a cloud server.

Figure 14: Sea pen detections in Video S using the RFCN model. Detections from this CNN are
shown as green boxes. The white boxes are from the DeepSORT tracking algorithm. The green
number refers to the DeepSORT identification given to the tracked instance and does not necessarily
reflect the count of instances.

Table 11

Video S detection results and metrics. The high-resolution images were unable to be processed by
the SSD model in the current pipeline so results are not available for this model. Results and metrics
for the BoVW models are not shown due to their overall poor performance in this task.

VIDEO S
Detections

Processing

Time [mm:ss]

Model
Frame Tagging DeepSORT Tracking

Laptop Cloud
TP FN FP Precision Recall TP FN FP MC Precision Recall

CNN

FRCNN 38 7 12 76% 84% 35 10 3 7 78% 78% 10:03 08:43

SSD - - - - - - - - - - - -

RFCN 42 3 10 81% 93% 40 5 2 4 95% 89% 13:01 09:09

Example frames from the detection process are shown in Figure 14 and the

detection results and metrics are given in Table 11. Due to a memory limitation, the

SSD model was unable to be trained on the large-scale images. Upon training

completion, the remaining CNN models claimed 94% and 98% precision (FRCNN,

and RFCN respectively) for recognising sea pens in the test images. This is most

likely due to the distinguishing shape and colour of the animal against other debris

on the seabed. The RFCN model maintained this level when analysing Video S with

DeepSORT tracking, scoring 95% precision and 89% recall. However, the FRCNN

48

algorithm only achieved precision of 76% with a recall of 84% in frame tagging, and

78% precision with 78% recall with DeepSORT. Unlike in the fish detection videos, in

this case, the RFCN network outperformed the FRCNN network which demonstrates

that no single model performs best in every task.

Nephrops burrow detection

Identifying Nephrops (Nephrops norvegicus) burrows is very challenging for the

untrained observer. There are a number of criteria that distinguish them from other

similar looking burrows in sandy seabeds[52]. Examples of these are shown in Figure

15. As the identification of these burrows is complex, only a preliminary identification

of entrances was attempted. This involved identifying all hole and hole-like debris in

the video frames which would then be hypothetically post-processed to determine

whether they pertain to a Nephrops burrow or not. Unfortunately, the full process of

burrow detection is outside the scope of this case study.

Figure 15: Left and middle: examples of Nephrops burrows highlighted by straight black lines. Right:
a resin cast of a Nephrops burrow. Distinguishing features include a crescent shaped entrance holes,
u-shaped complex, and entrances extending from the vertical apex in a linear fashion.

Underwater video surveys are used as a fishery-independent method to assess the

size of Nephrops stocks. The footage provided was obtained during these research

vessel surveys by means of an underwater camera and lights, mounted on a sledge

and towed along the seabed at approximately one knot. Counts of the burrows and

information on the area covered on each tow are used to estimate the density of

Nephrops on the ground.

49

Table 12

Video segments used for Nephrops burrow detection model comparison.

Video
Length

[mm:ss]
Flora/Fauna

Objects
(manually
counted)

Notes

NB 02:53
Nephrops
Burrows

Hundreds

Attempting preliminary detection of
holes in ground for hypothetical

subsequent analysis for Nephrops
burrows. Video frames are very
blurry when camera is moving.
Also, video contains too many
holes for accurate counting.

For training the Nephrops burrow detection algorithm, one frame each second was

extracted for the first 150s of a sample video. The remaining footage in the video

was analysed to assess the performance of the various models, shown in Table 12.

In this case only one frame per second was analysed.

Detections

Figure 16: Potential Nephrops burrow detections in Video NB using the FRCNN model. Ideally the
model should identify all hole-like objects in each frame for further post-processing. However, it is
clear from these images that many of these have not been identified.

Nephrops burrows require multiple steps for identification and to distinguish them

from other burrows on the seabed. These include subtle shape differences of the

entrance surrounded by characteristic claw marks in the sand and the connectivity

between various burrow entrances to produce the structure shown in Figure 15.

These factors are not easily translatable into features for performing object detection.

Instead, further custom algorithmical analysis would have to be performed on

potential entrances to determine whether or not the burrow. These steps involve, but

are not limited to, determining the angle of the entrance based on the perceived

angle from the camera, analysing which entrances may combine to create the

particular burrow structure, and assessing whether there may be obscured entrances

50

or entrances facing away from the camera. However, these steps are not simple to

program and fall outside the scope of the current case study.

As Nephrops burrows are difficult to identify, the training frames were manually

annotated with instances of holes or hole-like debris, representing potential

entrances to the burrow as the first step of hypothetical detection. These were then

put through the FRCNN pipeline. Unfortunately, recall never rose above 65%

meaning there were many instances that were missed. The images in Figure 16

show examples of the underperformance of the model.

The main factors for the low precision and recall scores are the lack of prominent

features of the hole structures combined with the blurred video from camera motion.

In some cases, the holes are only visible from subtle shading in the sand which is

difficult for the computer vision algorithm to recognise. The difficulty is further

compounded by the camera motion blur inflicting shading on various other features

of the seabed.

Although unsuccessful, this case serves to highlight that, while the current computer

vision technology is powerful, there are limitations as to what it can achieve on its

own. There are many steps to identifying a Nephrops burrow, beginning with

identifying possible entrance holes, and even that has been shown not to be a

straightforward task to automate. From the results here, it is considered that this

task, although not impossible, would require a much more specialised approach

which is outside the scope of the current case study.

Analysis of models from case study

It is clear from the results that the CNN models outperform the BoVW models in

terms of both speed and accuracy. With the CNN models, the high levels of precision

and recall observed indicate that these are potential solutions for automating the

analysis of videos from aquatic environments. However, selecting a single model for

an application is not straightforward. Whilst the SSD model was the fastest tested

here, which would be useful for analysing a large backlog of videos, it was not as

robust as the slower FRCNN or RFCN models. The FRCNN model performed the

best overall in the fish detection videos, but the RFCN model performed better with

fish classification and detecting sea pens. For future development, training of various

models would be beneficial to determine which performs best for the particular task

in question.

51

It was intended to create pipelines that avoided as much manual input as possible in

order to streamline the case study process. Therefore, in most cases, once enough

data has been annotated the models can all be trained and applied with the

execution of a single command. This also makes them approachable for further

investigation by researchers without a strong background in the field of computer

vision.

However, there are a couple of places where manual intervention is required. For

instance, in the BoVW models, training needed to be repeated multiple times to

reduce the number of false positives. This requires extracting these instances from a

set of results and adding them to the original data. Additionally, fine tuning the

Background Subtraction to remove noise requires various image processing steps

that were derived manually. These may need to be adjusted to suit different

backgrounds. However, in the CNN models, the background subtraction step only

serves to improve computation time as the model itself performs its own regional

selection algorithms and may not be necessary if time is of no issue.

In terms of the algorithms that constitute the pipelines, both the BoVW and CNN

methods are reasonably modular lending themselves to be improved with other

available methods if required. Currently, the CNN models are built around

TensorFlow and only accept compatible models; however, similar training and

execution pipelines in other frameworks exist that could be adopted in a similar

fashion. Similarly, the feature detection algorithms for the BoVW models could be

replaced by any algorithm that returns similar description vectors as the OpenCV

implementations of SIFT, SURF, and ORB. For every other section, alternative

algorithms are acceptable as long as the inputs and outputs are compatible with the

pipeline stages that come before and after respectively.

The footage tested in this case study was indicative of the various types of video

encountered in aquatic research. However, certain practices in obtaining footage

could aid in the process of automatically identifying aquatic life. Steady or still

camera shots prevent motion blur of subjects and backgrounds which makes

distinguishing features much simpler. Although high-definition footage also allows

more features to be presented in each image, there is a trade-off for processing

times as seen when comparing the computation time for a one minute 720 x 576 fish

trawl video (1.5-2 minutes) and a one minute 1920 x 1080 sea pen video (8-9

minutes). Furthermore, the scene should be well lit from artificial light to prevent

colour loss, but with care to avoid harsh reflections off subjects of interest that can

obscure features.

52

This case study has shown that these algorithms, specifically the CNN based

algorithms, are fit for purpose in identifying aquatic fauna in underwater video. They

are readily customisable for a variety of tasks and require a relatively low level of

human intervention to initiate. Once the data pipeline has been produced, the level of

input for customisation is relatively simple, only annotated data is required which can

be produced by a user with little knowledge of the inner workings of the model.

However, for consistently reliable, high-accuracy models, further specialist

development may be required to ensure the statistical precision and recall of the

models remain at appropriate levels across a wide variety of cases. Additionally, for

individual tasks, multiple CNN models should be trialled initially to determine which is

best suited for the job.

Conclusion

In this report, an overview of the current computer vision technologies were

presented with their contributions to the field of object detection in aquatic video. A

sample of the more promising technologies were taken forward for a case study to

analyse video clips of data provided by Marine Scotland. This identified some which

are viable for further development.

Although much research has been performed in the field of computer vision, recent

developments with convolutional neural networks have overshadowed many of the

previously developed algorithms. This was also reflected in the case study, where

the CNN algorithms outperformed the BoVW models by a large margin.

Additionally, the open-source variants of the technology have proven to be effective

even in the short developmental time frame available. This is promising for future

development as fewer resources are required to initialise the process and more work

can be performed in training and testing models. The working pipeline presented

here, based on Google Object Detection API, could act as a platform upon which to

build a working solution. There are other platforms, such as BIIGLE and VIAME,

which are also trying to bring these computer vision technologies to aquatic

scientists by abstracting out many of their complexities. However, they are currently

still in the early stages of development, but could possibly provide a solution in the

future.

The case study methodologies and results described in this report demonstrate that

the current available technology performs well in detecting aquatic fauna in

underwater video which, in turn, will help improve the environment analysis

capabilities of Marine Scotland. These methods could be applied to various video

53

material collected in, for instance, camera boxes connected to trawl nets; during

monitoring at tidal turbines and at wind turbine bases; and at video based fish

counters and in the video validation of fish counters using other technology. Although

some instances, like the Nephrops burrows, would require additional development,

salmon smolt and phosphorescent sea pen detection can be achieved using the

methods presented here.

Actionable recommendations

From the outputs of this case study, a variety of actionable recommendations are

proposed here for future research and development in this problem space:

1. For detection of aquatic life in video, the convoluted neural networks far

surpass the older algorithms in terms of both accuracy and ease of

development.

○ Transfer learning is sufficient in most cases. It is generally unnecessary

to retrain the convolution/pooling stages, meaning many available open

source options can be capitalized on.

○ However, more complex objects that require more nuanced

interpretation, such as the Nephrops burrows, will require further post-

processing or alternative approaches for automatic identification.

2. Develop or document a database of images with annotations of aquatic life for

training purposes.

○ All models exhibited here rely on training data to properly initialise the

feature detection steps.

○ The video data supplied contained annotations of number of species

identified with approximate timestamps which are insufficient for

training these algorithms.

○ Regardless of the final method chosen, having a database of training

data already available will greatly facilitate future development.

○ The recommended requirements are a database of images, each with

corresponding [X, Y, width, height] annotations similar to Figure 5.

These annotations should also denote the class of the object

represented which should be unique to prevent confusion (e.g. genus

and species). Although the actual annotation formats used by various

training models may vary, they can usually be derived from this

information.

54

3. It would be beneficial to develop a platform, or adopt an existing platform, for

aquatic biologists to gain familiarity with the process of training and adopting

these types of models.

○ The complexities of model and parameter selection should be kept to a

minimum in the platform to avoid unnecessary complexity to the

process.

○ This would allow researchers to attempt development of models by

themselves with their own data without having to refer to an expert in

the field of computer vision.

○ There exist potential solutions based on other platforms such as

BIIGLE, CoralNet, and VIAME that may address some areas of the

problem space, although they would require additional development or

expertise to achieve a complete end-to-end solution.

4. Some of these computer vision models may outperform humans in some

tasks and underperform in others. Therefore, a certain level of standardisation

of the various elements involved, which might include benchmark tests and

standard data libraries, will be required to compare the performance of

different available processes.

○ Additionally, a standardised representative level of accuracy should be

presented with models to correctly interpret generated detections if the

video is never going to be reassessed by humans.

Considerations towards a complete end-user solution

In addition to the recommendations above, the following is a list of possible platforms

upon which to potentially build a complete solution for the automatic detection of

aquatic life in underwater video.

The Google Object Detection API platform is the method displayed during this case

study. The others represent alternative platforms currently in varying stages of

development. However, these other platforms will also require additional effort or

development to be able to implement a full end-to-end solution similar to the

approach presented in this case study. All these platforms are available in open

source formats.

55

 Google Object Detection API (combined with DeepSORT tracking)

Pros

● Demonstrated here in the case study to be a powerful and versatile

option for detecting and counting aquatic life.

● Can be trained on almost any subject with enough training data.

● Feature detection model can be chosen to suit the task at hand.

Cons

● Requires knowledge of Python scripting and familiarity with the

TensorFlow library to implement.

● On its own it is a bare-bones package aimed at computer vision

researchers. It is not suitable for people unfamiliar with the training

and implementing neural networks.

Work
Required

● As with the working pipeline presented in this case study, the process

for training and executing the networks can be extracted out into

simple steps.

● Additional work could be put in to create a user-friendly front end to

simplify the process.

 VIAME (Video and Image Analytics for a Marine Environment)

Pros

● Has lots of functionality in regards to computer vision technology,

including the ability to track and count species in video.

● It is aimed towards marine scientists and the problems they would

encounter with visual data.

● Allows for a modular approach to customise your own solution.

Cons

● Installation is not straight forward. Obtaining a version was not

possible in the time frame of this project.

● From the tutorial videos it contains, the interface looks very dense

and not necessarily user-friendly for people unfamiliar with computer

vision technologies.

● It appears to only contain a single type of CNN to work with out of the

box. It may be possible to include more through the modular

framework but it is unclear.

Work
Required

● Assistance from developers would be required to setup and configure

the software.

● This would involve training and instruction on how to use the various

features that it contains.

 CoralNet

Pros

● Contains a powerful CNN backend to assist in automatically detecting

coral in images.

● Can upload your images for processing to enable public sharing of

data.

Cons
● Specialised for reefs and surface biological growths, not compatible

with detection and tracking algorithms.

56

● Only works with images, so videos would have to be processed into

frames manually before passing to this software.

● The CNN model is hosted by the website meaning customisation of

the approach is not possible.

Work
Required

● This solution performs well in identifying types of surface biological

growth in images.

● For video processing, extraction of frames and subsequent analysis

on the frame detections would be required to incorporate tracking and

counting.

● Alternatively, a custom interface to the website could be produced;

however, there could be unforeseen integration problems with this

approach.

 BIIGLE

Pros

● An accessible web-based interface that has a simple workflow

pattern (once data has been hosted in an online repository).

● The machine learning suggestions that are returned are useful and

generally accurate.

● Has an established user base.

Cons

● The process is image focused (not video) meaning the ability to track

and count objects is not present.

● Only works with images, so videos would have to be processed into

frames manually before passing to this software.

● Requires users to host images themselves (no option to directly

upload to the software without additional permissions), which

presents a barrier to entry if researchers are not familiar with the

process.

Work
Required

● This solution is functional and approachable for the task it performs,

which is identifying subjects in images.

● Manual pre-processing of video and subsequent analysis on the

frame detections would be required to enable video processing.

● Alternatively, a custom interface to the website could be produced;

however, there could be unforeseen integration problems with this

approach.

 FishTick

Pros
● Used widely for fish counting in North America.

● Interface is simple and straight-forward to set up.

Cons

● Current version only contains frame-tagging capabilities. Manual

classification and counting still need to be performed.

● Currently requires simple stationary backgrounds (i.e. fish ladders).

57

Work
Required

● A new version that aims/claims to include automated classification

and counting is in the beta stages of development. However, the

release date for this is unknown.

Acknowledgements

The authors would like to thank Scottish Government for providing the funding and

Marine Scotland Science for providing the video data used in this project. We would

also like to thank Marine Scotland and Scottish Natural Heritage for participation in

the project steering group.

References

[1] Dawson-Howe, K. (2014). A practical introduction to computer vision with

OpenCV. John Wiley & Sons.

[2] Panchal, P., Prajapati, G., Patel, S., Shah, H., & Nasriwala, J. (2015). A review on

object detection and tracking methods. International Journal for Research in

Emerging Science and Technology, 2(1), 7-12.

[3] Zhang, D., Islam, M. M., & Lu, G. (2012). A review on automatic image annotation

techniques. Pattern Recognition, 45(1), 346-362.

[4] Lowe, D. G. (1999). Object recognition from local scale-invariant features.

Proceedings of the International Conference on Computer Vision, 99(2), 1150-1157.

[5] Mikolajczyk. K. and Schmid, C. (2005). A performance evaluation of local

descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10), 1615–1630.

[6] Viola, P. and Jones, M. (2001). Robust real-time object detection. International

Journal of Computer Vision, 4(4), 34-47.

[7] Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features.

In European conference on computer vision (pp. 404-417). Springer, Berlin,

Heidelberg.

[8] Movellan, J. R. (2002). Tutorial on Gabor filters. Open Source Document.

https://web.archive.org/web/20090419123314/http://mplab.ucsd.edu/tutorials/gabor.p

df

https://web.archive.org/web/20090419123314/http:/mplab.ucsd.edu/tutorials/gabor.pdf
https://web.archive.org/web/20090419123314/http:/mplab.ucsd.edu/tutorials/gabor.pdf

58

[9] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human

detection.

[10] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. R. (2011). ORB: An efficient

alternative to SIFT or SURF. International Conference on Computer Vision, 11(1), 2.

[11] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M. & Berg, A.C. (2015). ImageNet large scale

visual recognition challenge. International journal of computer vision, 115(3), 211-

252.

[12] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems (pp. 1097-1105).

[13] “ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)”,

ImageNet. http://image-net.org/challenges/LSVRC/2012/results.html

[14] “ImageNet Large Scale Visual Recognition Challenge 2017 (ILSVRC2017)”,

ImageNet. http://image-net.org/challenges/LSVRC/2017/results

[15] Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T.,

Eguiraun, H., Watson, W., Stahl, A., Sunde, L.M. & Schellewald, C. (2018). Precision

fish farming: A new framework to improve production in aquaculture. Biosystems

Engineering, 173, 176-193.

[16] Beauxis-Aussalet, E., Palazzo, S., Nadarajan, G., Arslanova, E., Spampinato,

C., & Hardman, L. (2013). A video processing and data retrieval framework for fish

population monitoring. In Proceedings of the 2nd ACM international workshop on

Multimedia analysis for ecological data (pp. 15-20). ACM.

[17] Jovanović, V., Risojević, V., Babić, Z., Svendsen, E., & Stahl, A. (2016). Splash

detection in surveillance videos of offshore fish production plants. In 2016

International Conference on Systems, Signals and Image Processing (IWSSIP) (pp.

1-4). IEEE.

[18] Williams, K., Lauffenburger, N., Chuang, M. C., Hwang, J. N., & Towler, R.

(2016). Automated measurements of fish within a trawl using stereo images from a

Camera-Trawl device (CamTrawl). Methods in Oceanography, 17, 138-152.

http://image-net.org/challenges/LSVRC/2012/results.html
http://image-net.org/challenges/LSVRC/2017/results

59

[19] Williams, K., Rooper, C. N., & Harms, J. J. H. (2012). Report of the National

Marine Fisheries Service Automated Image Processing Workshop, September 4-7,

2012, Seattle, Washington..

[20] Shortis, M.R., Ravanbakskh, M., Shaifat, F., Harvey, E.S., Mian, A., Seager,

J.W., Culverhouse, P.F., Cline, D.E. and Edgington, D.R. (2013). A review of

techniques for the identification and measurement of fish in underwater stereo-video

image sequences. In Videometrics, Range Imaging, and Applications XII; and

Automated Visual Inspection (Vol. 8791, p. 87910G). International Society for Optics

and Photonics.

[21] Spampinato, C., Chen-Burger, Y. H., Nadarajan, G., & Fisher, R. B. (2008).

Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater

Videos. VISAPP, 2(2008), 514-519.

[22] Khanfar, H. et al. "Automated recognition and tracking of fish in underwater

video." Final Report, LA Board of Regents Contract NASA (2008)-STENNIS-08.

(2010).

[23] Khanfar, H., Charalampidis, D., Ioup, G., Ioup, J., & Thompson, C. H. (2010).

Automated recognition and tracking of fish in underwater video. Final Report, LA

Board of Regents Contract NASA (2008)-STENNIS-08.

[24] Westling, F., Sun, C., & Wang, D. (2014). A modular learning approach for fish

counting and measurement using stereo baited remote underwater video. In 2014

International Conference on Digital Image Computing: Techniques and Applications

(DICTA) (pp. 1-7). IEEE.

[25] Lantsova, E., Voitiuk, T., Zudilova, T., & Kaarna, A. (2016). Using low-quality

video sequences for fish detection and tracking. In 2016 SAI Computing Conference

(SAI) (pp. 426-433). IEEE.

[26] Viola, P. and Jones, M. (2001). Rapid Object Detection using a Boosted

Cascade of Simple Features. IEEE Int. Conf. on Computer Vision and Pattern

Recognition (CVPR), 1(1), 511-518.

[27] Iqbal, K., Salam, R. A., Osman, A., & Talib, A. Z. (2007). Underwater Image

Enhancement Using an Integrated Colour Model. IAENG International Journal of

Computer Science, 34(2).

60

[28] Peng, Y. T., Zhao, X., & Cosman, P. C. (2015). Single underwater image

enhancement using depth estimation based on blurriness. In 2015 IEEE International

Conference on Image Processing (ICIP) (pp. 4952-4956). IEEE.

[29] Ghani, A. S. A. and Isa, N. A. M. (2014). Underwater image quality

enhancement through Rayleigh-stretching and averaging image planes. International

Journal of Naval Architecture and Ocean Engineering, 6(4), 840-866.

[30] Singh, R. and Mantosh, B. (2017). Hazy Underwater Image Enhancement based

on Contrast and Color improvement using fusion technique. Image Processing &

Communications, 22(3), 31-38.

[31] Salman, A., Siddiqui, S.A., Shafait, F., Mian, A., Shortis, M.R., Khurshid, K.,

Ulges, A. and Schwanecke, U. (2019). Automatic fish detection in underwater videos

by a deep neural network-based hybrid motion learning system. ICES Journal of

Marine Science.

[32] Labao, A.B. and Naval Jr, P. C. (2019). Cascaded deep network systems with

linked ensemble components for underwater fish detection in the wild. Ecological

Informatics. 52, 103-121.

[33] Rathi, D., Jain, S., & Indu, S. (2017). Underwater fish species classification

using convolutional neural network and deep learning. In 2017 Ninth International

Conference on Advances in Pattern Recognition (ICAPR) (pp. 1-6). IEEE.

[34] Li, X., Shang, M., Hao, J., & Yang, Z. (2016). Accelerating fish detection and

recognition by sharing CNNs with objectness learning. In OCEANS 2016-Shanghai

(pp. 1-5). IEEE.

[35] Piechaud, N., Hunt, C., Culverhouse, P. F., Foster, N. L., & Howell, K. L. (2019).

Automated identification of benthic epifauna with computer vision. Marine Ecology

Progress Series. 615, 15-30.

[36] Huang, R. J., Lai, Y. C., Tsao, C. Y., Kuo, Y. P., Wang, J. H., & Chang, C. C.

(2018). Applying convolutional networks to underwater tracking without training. In

2018 IEEE International Conference on Applied System Invention (ICASI) (pp. 342-

345). IEEE.

61

[37] Jäger, J., Wolff, V., Fricke-Neuderth, K., Mothes, O., & Denzler, J. (2017). Visual

fish tracking: Combining a two-stage graph approach with CNN-features. In

OCEANS 2017-Aberdeen (pp. 1-6). IEEE.

[38] Gomes-Pereira, J.N., Auger, V., Beisiegel, K., Benjamin, R., Bergmann, M.,

Bowden, D., Buhl-Mortensen, P., De Leo, F.C., Dionísio, G., Durden, J.M. and

Edwards, L. (2016). Current and future trends in marine image annotation software.

Progress in Oceanography, 149, 106-120.

[39] Williams, I. D., Couch, C., Beijbom, O., Oliver, T., Vargas-Angel, B.,

Schumacher, B., & Brainard, R. (2019). Leveraging automated image analysis tools

to transform our capacity to assess status and trends on coral reefs. Frontiers in

Marine Science, 6, 222.

[40] Gormley, K., McLellan, F., McCabe, C., Hinton, C., Ferris, J., Kline, D., & Scott,

B. (2018). Automated image analysis of offshore infrastructure marine biofouling.

Journal of Marine Science and Engineering, 6(1), 2.

[41] “The Nature Conservancy Fisheries Monitoring”. Kaggle Inc.

https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring

[42] “N+1 Fish, N+2 Fish”. DrivenData.

https://www.drivendata.org/competitions/48/identify-fish-challenge/

[43] “Winning models for the N+1 Fish, N+2 Fish competition“. DrivenData, GitHub,

Inc. https://github.com/drivendataorg/n-plus-one-fish

[44] Chuang, M. C., Hwang, J. N., & Rose, C. S. (2013). Aggregated segmentation of

fish from conveyor belt videos. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing (pp. 1807-1811). IEEE.

[45] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,

Wojna, Z., Song, Y., Guadarrama, S. and Murphy, K., (2017). Speed/accuracy trade-

offs for modern convolutional object detectors. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 7310-7311).

[46] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time

object detection with region proposal networks. In Advances in neural information

processing systems (pp. 91-99).

https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
https://www.drivendata.org/competitions/48/identify-fish-challenge/
https://github.com/drivendataorg/n-plus-one-fish

62

[47] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.

(2016). SSD: Single shot multibox detector. In European conference on computer

vision (pp. 21-37). Springer, Cham.

[48] Dai, J., Li, Y., He, K., & Sun, J. (2016). R-RCN: Object detection via region-

based fully convolutional networks. In Advances in neural information processing

systems (pp. 379-387).

[49] Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv

preprint arXiv:1804.02767.

[50] Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking

with a deep association metric. In 2017 IEEE International Conference on Image

Processing (ICIP) (pp. 3645-3649). IEEE.

[51] Bell, E., Clements, A., Dobby, H., Doyle, J., Feekings, J.P., Leocádio, A.,

Lordan, C., Weetman, A. and Wieland, K. (2018). Using underwater television

surveys to assess and advise on Nephrops stocks.

[52] “Report of the Workshop on Nephrops burrow counting.”, ICES SSGIEOM

Committee, (2016).

© Crown Copyright 2020

Marine Scotland Science

Marine Laboratory

375 Victoria Road

Aberdeen

AB11 9DB

Copies of this report are available from the Marine Scotland website at

www.gov.scot/marinescotland

http://www.gov.scot/marinescotland

