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Executive summary 

 

Marine Scotland tasked MarynSol to provide an overview of the current state of 

computer vision technologies for automated detection of aquatic life in underwater 

video, the objective being to provide a development route for a tool to analyse the 

large amount of historic video footage without the need for human supervision. This 

task was split into two parts: the first being a review of the literature of the current 

technologies and the second being a case study incorporating some of the more 

promising candidates for this problem space. 

 

There is considerable immediate potential to make use of such methods for the 

automated detection and identification of fish and other fauna in underwater video 

material collected in camera boxes connected to trawl nets; during monitoring at tidal 

turbines and at wind turbine bases; and at video based fish counters and in the video 

validation of fish counters using other technology. It is hoped that such methods may 

well allow effective progress to be made with archived video material which various 

parties hold which is waiting for review. 

 

Introduction to computer vision 

 

The field of computer vision is wide with many researchers trying to tackle similar 

problems in various fields. Most approaches take the form of creating ‘features’, such 

as edges or corners, and mapping them together to form objects. A number of 

different algorithms have been proposed to perform this with varying levels of 

success. However, current trends involve applying a form of artificial neural network 

(ANN) algorithm to extract and compare features automatically.  

 

Artificial neural networks are powerful statistical models for estimation and 

classification for many different data types and uses. Convolutional Neural Networks 

(CNNs) are a type of ANN, which can be used to identify the contents of images by 
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applying multiple convolution stages to extract out features. These CNNs can then 

be trained to detect objects such as fish or other aquatic life. 

 

Review of relevant approaches  

 

The literature for this specific problem space follows the same trends as the wider 

field of computer vision. Previous works have focused on employing feature 

detection algorithms to identify aquatic life but current trends adopt CNN based 

algorithms. There are various examples and platforms where CNNs have 

successfully identified subjects in a range of video environments. Certain platforms, 

such as BIIGLE and CoralNet, adopt CNN algorithms to assist in annotating image 

and video data by prompting users with potential regions or classifications. Similarly, 

a platform called VIAME hosts a number of algorithms in a single location with an 

interactive interface to enable researchers to adopt these methods. Currently, these 

platforms offer potential but are still under development so they might not quite yet 

be fit for purpose. 

 

Case study scope 

 

A comparison of models was subsequently performed in the case study. This case 

study employed mainly open-source algorithms to minimise the time spent in 

algorithm development, with the OpenCV (open-source) and Google Object 

Detection API (open-source based in Google TensorFlow) libraries chosen to 

develop end-to-end pipelines for training and executing models. Background 

subtraction algorithms were adopted from OpenCV to determine whether each frame 

contained any potential regions to investigate. Subsequently, various feature 

detectors were applied to establish whether the region contained an object of 

interest. If a certain number of frames were tagged in succession, then they were 

flagged as a positive identification. Additionally, a third-party algorithm, DeepSORT 

(also open-source), was incorporated to track objects frame by frame to determine 

whether the video subjects could be counted automatically. 

 

The OpenCV library offered three feature detectors to incorporate into the pipeline, 

SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features) 

and ORB (Orientated FAST and Rotated BRIEF). These had to be wrapped into a 

method to convert the returned feature descriptions into object detections. The 

BoVW (Bag of Visual Words) method was chosen whereby the feature descriptions 

were converted into histograms by summing together similar appearing features. 

This histogram could then be compared to histograms created by training data to 

determine whether the ROI contained the object of interest. 
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Three CNN models were chosen from the Google Object Detection API library for 

use in this case study. These were FRCNN (Faster Region-based Convolutional 

Neural Network), SSD (Single Shot Detector) and RFCN (Region-based Fully 

Convolutional Network). The FRCNN and RFCN algorithms are generally considered 

more accurate whilst the SSD algorithm has a much faster processing time. The 

Google Object Detection API already contained methods for training and applying 

these models with custom data so minimal effort was required to include them into 

the working pipeline. 

 

Evaluation on real data scenarios  

 

Video samples were extracted from available data to test the various trained models. 

These included samples of Atlantic salmon smolts (Salmo salar) and European 

sprats (Sprattus sprattus) passing through a camera box attached to a trawl net, a 

mobile sea-bed rig looking at phosphorescent sea pens (Pennatula phosphorea), 

and a mobile sea-bed rig looking at Norwegian lobster (Nephrops norvegicus, 

termed Nephrops) burrows. This demonstrated the capabilities of the models to 

handle a variety of inputs and test the different aspects of the pipeline.  

 

In all cases, the CNN based algorithms outperformed the BoVW based algorithms in 

terms of accuracy. For fish counting, the CNN algorithms returned zero false 

positives when tagging sets of frames, and the RFCN algorithm was able to detect 

95% of smolts passing through. Accuracy was lower when trying to automatically 

count fish using the DeepSORT tracking algorithm, with the FRCNN algorithm 

successfully tracking 74% of smolts but also returning multiple instances of double 

counting. In the classification test for distinguishing between smolts and sprats, the 

RFCN algorithm was correct in 98% of detections. In the sea pen trial, the RFCN 

algorithm performed best with 89% correctly detected and tracked instances.  

 

Although, in terms of speed, the SSD algorithm performed best with near real time 

analysis in some cases, it suffered from poor accuracy compared to the other CNN 

algorithms. With the adoption of a cloud computing instance to speed up processing, 

the FRCNN and RFCN algorithms were able to process video in 1.6x-1.8x the video 

length. The BoVW models tended to be moderately faster unless the frames 

contained many regions to analyse, but this speed increase did not make up for the 

lack of reliability present in these models. 

 

Unfortunately, identifying the Nephrops burrows in video frames proved to be too 

complex to provide robust detections. The combination of blurred footage and very 

subtle indicators meant that the object detection algorithms were not able to detect 
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entrances or even confidently detect holes in the ground for further processing. 

Alternative processing steps would be required for detecting this type of object in 

underwater video. 

 

The speeds and accuracy values quoted here are only indicative of the models used 

as their performance can vary greatly with the type of data provided and training 

parameters given. However, it is clear that the CNN algorithms outperform the other 

feature detection models and should form the basis of any future work. This is also 

reflected in the literature analysis, which demonstrated a trend towards this type of 

approach in the field of automated aquatic video analysis. 

 

Recommendations  

 

In conclusion to this report, a number of actionable recommendations are provided if 

further development in this field is to be performed: 

 

1. For detection of aquatic fauna in video, the convoluted neural networks far 

surpass the older algorithms in terms of both accuracy and ease of 

development.  

 

2. Develop or document a database of images with annotations on aquatic 

species for training purposes. 

 

3. It would be beneficial to develop a platform, or adopt an existing platform, for 

aquatic biologists to gain familiarity with the process of training and adopting 

these types of models.  

 

4. Some of these computer vision models may outperform humans in some 

tasks and underperform in others. Therefore, a certain level of standardisation 

of the various elements involved, which might include benchmark tests and 

standard data libraries, will be required to compare the performance of 

different available processes.  
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List of names and acronyms 
 

AdaBoost  
Adaptive Boosting - A machine learning classifying technique that 
combines many statistical models with a weighted sum to produce a 
stronger statistical model. 

AlexNet  
A CNN that won the 2012 ILSVRC by a large margin, which some 
consider to be a turning point in the field of computer vision to adopt 
more CNN methods. 

ANN 
Artificial Neural Network - A statistical analysis tool that is built up of 
nodes and trainable connections which resembles neural networks of 
the human brain.  

AWS 
Amazon Web Services - A cloud computing platform provided by 
Amazon. 

BIIGLE 
A web service for the efficient and rapid annotation of still images and 
videos. 

BoVW 
Bag of Visual Words - A method for classifying images based on a 
Bag of Words classifying model. 

BRIEF 
Binary Robust Independent Elementary Features - A feature 
descriptor standard that improves speed of matching features by 
reading straight from binaries. 

CATAMI 
Collaborative and Automated Tools for Analysis of Marine Imagery - A 
classification scheme for scoring marine biota and substrata in 
underwater imagery. Also has a tool to assist annotations. 

Computer 
Vision 

A field of study associated with the automated interpretation and 
extraction of information from images and videos.  

Convolution 

A mathematical term for the combination of two functions to form a 
third which represents the shape of one modified by the other. In 
terms of CNN, the convolution stage is represented by a pixel filter on 
images to derive spatial relationships between pixels. 

CoralNet 
A web service by the same creates as VIAME for organising and 
annotating images of coral. It is still under development. 

CPU 
Central Processing Unit - The main processor in computers. This 
favours performing complex calculations in series (as opposed to 
GPUs that favour many simple calculations in parallel). 

CNN 
Convolutional Neural Network - A type of ANN that processes images 
through numerous convolutional stages before a classification stage. 

Darknet 
A bespoke neural network creation platform from the creators of the 
YOLO CNN. 

DeepSORT  
Simple Online and Realtime Tracking with a Deep Association Metric 
- A tracking algorithm that combines a variety of tracking algorithms 
together with a neural network framework. 

DrivenData  
A website that hosts machine learning and data analysis 
competitions. Hosted the “N+1 Fish, N+2 Fish” classification 
competition. 

FAST 
Features from Accelerated Segment Test - A corner feature detection 
algorithm with notably increased speeds over other methods such as 
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SIFT or SURF. 

Feature 
In the field of Computer Vision, a mathematical description of part of 
an image such as an edge or a corner that can be used to build 
profiles of objects and content present in the image. 

Feature Map 
A combination of different features that together build a profile of a 
specific object or classification.  

FFMPEG 
Fast Forward Moving Picture Experts Group - An open source video 
manipulation software toolkit. 

FishTick 
A piece of software developed by Salmonsoft for analysing and 
counting fish in dams and weirs. 

FRCNN 
Faster Region-based Convolutional Neural Network - An object 
detection CNN method. This algorithm has efficient region proposals 
allowing for highly accurate detections in large images. 

Gabor Filters Linear filters used in image processing to determine textures.  

Gaussian 
Filter 

A convolution step performed using Gaussian functions.  

Gaussian 
Function 

A function that forms a characteristic bell curve shape.  

Google 
Object 

Detection API 

An open source repository of object detection training and testing 
algorithms built with TensorFlow. 

GPU 

Graphical Processing Unit - An optional processor in computers, 
generally used for graphical processes. This favours performing many 
simple calculations in parallel (as opposed to CPUs that favour 
complex calculations in series). 

Haar features 
Filters used in image processing to determine whether pixels fall into 
particular spatial relationships. 

Haar 
wavelets 

A signal wavelet built up of square shaped oscillations. Can be used 
as filters to extract information from pixels.  

HOG 
Histogram of Orientated Gradients - A feature descriptor in image 
processing that measures the sum of various pixel gradients over an 
image or ROI. 

ILSVRC 
ImageNet Large Scale Visual Recognition Challenge - A competition 
for object detection algorithms to determine their effectiveness on a 
wide variety of objects. 

JPEG Joint Photographic Experts Group - A format for saving image files.  

Kaggle 
A website that hosts machine learning and data analysis 
competitions. Hosted the “The Nature Conservancy Fisheries 
Monitoring” classification competition. 

Kalman 
Filters 

A filter that estimates the internal state of a dynamic system from a 
series of measurements. Used for predicting motion of objects in 
object tracking. 

KNN 
K-Nearest Neighbours - A machine learning clustering method that 
describes data in terms of its closest distance to existing cluster 
centres. 

Marine A Scottish governmental department responsible for growing 
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Scotland Scotland’s marine assets and protecting marine ecosystems. 

Marine 
Scotland 
Science 

A division of Marine Scotland focused on providing expert scientific, 
economic and technical advice and services on issues relating to 
marine aquaculture, renewable energy and environment. 

MarynSol 

The company contracted by Marine Scotland to perform this study. 
MarynSol’s business involves providing marine data analytics, 
advanced marine survey, and marine data database and 
warehousing. 

MOG 
Mixture of Gaussians - A machine learning clustering method that 
describes data as a combination of various Gaussian profiles.  

ORB 
Orientated FAST and Rotated BRIEF - A feature detection algorithm 
created by OpenCV as an alternative to SIFT and SURF.  

OpenCV 
Open Computer Vision - An open-source library that provides many 
computer vision tools and algorithms. 

OpenCV KNN 
A background subtraction method in OpenCV that applies KNN 
classification to pixels. 

OpenCV 
MOG2 

A background subtraction method in OpenCV that utilises a MOG 
method. 

Pooling 
The act of combining values into a single representative value (e.g. 
through averaging or taking a maximum value). 

Random 
Forest 

A machine learning classification tool that takes the weighted output 
of many different decision trees. 

Rekognition  
A platform provided by Amazon for video analysis using a selection of 
pre-built models such as object detection and  facial recognition. 

RFCN 

Region-based Fully Convoluted Network - An object detection CNN 
method. Uses an alternative region selection method to FRCNN by 
splitting the ROI into a 3x3 box. Has comparable speeds and 
accuracies to FRCNN. 

ROI 
Region Of Interest - A subsection of an image that has been flagged 
for further analysis.  

Salmonsoft The company that produced FishTick software. 

SIFT 
Scale-Invariant Feature Transform - A feature detector that uses 
maxima and minima from a difference of Guassians function. 

Squidle 
A tool for managing, exploring and annotating images, video and 
large-scale mosaics. 

SSD 
Single Shot Detector - An object detection CNN method. This 
algorithm values speed over accuracy and is used in many real-time 
image processing tools. 

SURF 
Speeded Up Robust Features - A feature detector based on the sum 
of the Haar wavelet response around blob detections. 

TensorBoard 
A visualisation tool for TensorFlow that displays training and testing 
metrics. 

TensorFlow 
An open source platform for ANN development and training provided 
by Google. 

VIAME 
Video and Image Analytics for a Marine Environment - An open-
source system for analysis of underwater video and imagery which 
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pulls together a variety of different image analysis tools and 
algorithms into one place. 

Viola-Jones 
framework 

An object detection framework built using Haar features and 
AdaBoost. One of the earliest successful forms of facial recognition. 

YADIF 
Yet Another DeInterlacing Filter - A filter to remove the interlacing 
effect in some video formats.  

YOLO 
You Only Look Once - A fast and accurate CNN built using the Darknet 
platform. A very popular and widely used algorithm. It is included in the 
VIAME software. 
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Introduction 

 

Scottish Government are committed to studying and maintaining the environment 

and ecology of coastal waters around Scotland. Monitoring underwater habitats, 

such as those around renewable energy and aquaculture sites, is essential in 

ensuring the preservation of marine life. Unfortunately, these sites tend to be remote 

and inaccessible, limiting the availability of data to analyse them. 

 

Underwater video cameras offer a relatively simple and cheap method to rapidly 

collect substantial amounts of data across a wide range of locations for study. 

Unfortunately, survey campaigns can generate hundreds of hours of footage which 

require distilling into manageable datasets. Manual processing of this footage is 

slow, tedious, and is limiting in the amount of imagery that can practically be 

processed. Automated and semi-automated analysis algorithms for these videos 

have been around for many years in order to extract information, such as the number 

or the type of fish present. However, these methods tend to have varying degrees of 

success when installed outside of controlled laboratory settings. 

 

Furthermore, capturing high quality video for analysis can be difficult in underwater 

environments. The devices can be affected by poor lighting due to the turbidity of the 

water. Lenses can become fouled over time due to biofouling or deposition of 

sediment, obstructing the view. Additionally, rapid motion of fish in the shot can 

produce blurred effects, which further compounds the difficulties with automated 

identification of subjects present. There also exist many algorithms that try and cope 

with these limitations but, as before, their effectiveness can be variable in real-world 

environments. 

 

However, image analysis technologies have been revolutionised recently with 

advancements in machine learning and neural networks. This, in combination with 

established image processing analysis techniques has the potential to have a 

powerful impact in this problem space.  

 

There is considerable immediate potential to make use of such methods for the 

automated detection and identification of fish and other fauna in underwater video 

material collected in camera boxes connected to trawl nets; during monitoring at tidal 

turbines and at wind turbine bases; and at video based fish counters and in the video 

validation of fish counters using other technology. Such methods may well allow 

effective progress to be made with archived video material which various parties hold 

which is waiting for review. 
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In this project, Marine Scotland tasked MarynSol to deliver an overview of the current 

technologies and methods for fauna/object identification in underwater video, 

alongside the current developing object detection technologies developed within 

recent years. Additionally, a test-bed of some of the more promising technologies will 

be presented, using video provided, to assess their potential impact on future 

research and development.   

 

Objective 

 

The objective of this study is to present the current state of technologies for 

automatic detection of aquatic life in underwater video footage, the purpose being to 

extract relevant data from these sources without resorting to the large amount of 

expert man-hours required to sift through the footage manually. This data could then 

be applied immediately to address knowledge gaps in aquatic ecological monitoring, 

such as biodiversity tracking or assessing the environmental impacts of aquaculture 

farms and renewable energy infrastructure. 

 

This review will present a general overview of the current technologies available 

commercially or open source that directly relate to the problem space (i.e. current 

software to aid in aquatic fauna/flora detection) and the current direction of 

technologies and algorithms in the field of video object detection in general. These 

technologies will be investigated in a subsequent case study to determine the 

feasibility of adopting them into the current problem space. 

 

Problem space 

 

Although the task of recognising objects in images and video seems relatively 

straight-forward for humans to perform, replicating this feat in computers is not so 

easily done. Even though it is second nature for humans and animals to see and 

interpret the world around them, the actual underlying process that is performed is 

not well understood. Therefore, translating it into programming scripts and algorithms 

for computers to execute is challenging. 

 

In breaking down the task of analysing aquatic life in video, there are varying levels 

of information that could be extracted which involve different algorithms and 

approaches. For instance, if taking an example where the objects of interest are fish, 

then the tasks could be summed up as follows:   

 

  



13 

 

● Where are the fish? 

○ This involves detecting whether or not the image contains fish and 

where they are in the image.  

 

● What type of fish are they? 

○ Once the fish has been found, further analysis is required to determine 

what type of fish it is, based on the visible features. 

○ This step usually requires expert knowledge and experience which can 

sometimes be difficult to translate into an algorithm. 

 

● How many fish? 

○ To count fish in video, each fish needs to be followed between frames 

in order to prevent double-counting. 

○ This can quickly become complicated as fish may move erratically and 

overlap one another, making tracking difficult for even human 

observers.  

 

● How big are the fish? 

○ In some cases, fish length can be estimated by comparing the snout-

to-tail pixel distance to a known length in the image. For automatic 

measurements, this process requires calibration and also detection of 

fish orientation and features. 

○ Alternatively, stereo-camera systems can use perspective to estimate 

length, but the fish detected need to be identified in two frames 

simultaneously. 

 

These four tasks represent classic computer vision problems that have been studied 

over the last 50 years. In that time, various approaches and advances have been put 

forward, but these problems still remain the focus of a wide array of research 

institutions today.   

 

Furthermore, underwater video also presents additional difficulties to the traditional 

task of object detection due to the environment in which it is obtained. These include: 

 

● Low light level. 

○ Light penetration of water decreases at lower depths. Without 

alternative light sources, video taken at these levels can be dark with 

low contrast between background and objects of interest. Even when 

additional artificial light is used, the scene illumination is often variable, 

and optical backscatter effects can be significant. 
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● Colour faded. 

○ In the absence of an additional light source, the light that does reach 

low depths of high transparency water tends to be blue-shifted, giving 

everything a greenish-blue tinge. Additionally, materials dissolved or 

suspended in the water can absorb other wavelengths of light causing 

variations of colour in salt and freshwater sources. The lack of colour 

variation, other than in shallow high transparency water or with 

additional lighting, represents a loss of information in the video and can 

make object identification harder. 

 

● Blurred elements from rapid motion. 

○ High quality video capture underwater is often difficult to obtain. 

Lighting levels and standard video shuttering rates can cause motion 

blur, and other effects. Both the camera and subjects can be buffeted 

by tidal flows or move erratically causing motion blur in obtained 

footage. This can conceal features making identification of objects 

more difficult. 

 

● Bio-fouling on lens in installed cameras. 

○ If cameras are mounted on a permanent or semi-permanent fixture for 

extended periods of time, the video imagery can be subject to bio-

fouling as marine growth forms on the lens. This obscures any potential 

objects and renders detection and identification much more difficult. 

 

From this, it can be seen that this problem space is highly complex with many 

different challenges to tackle. There is not currently a stand-alone algorithm that can 

be used to solve all of the above. However, advances in computer vision have 

already addressed parts of these problems which will be demonstrated in the 

following sections.  

 

Computer vision 

 

Introduction 

 

‘Computer vision’ is a highly interdisciplinary field of study that affects many areas of 

research. Extracting information from images automatically allows for automation in 

tasks that previously were thought to be only possible by a human controller. From 

reading the pieces of a chessboard to allowing a self-driving car to navigate 

populated roads, computer vision can be useful in almost any field[1]. 
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For this task, the objective is to have a computer automatically review what may be 

thousands of hours of footage to count, annotate, and classify objects of interest. 

Therefore, the ideal algorithm must be able to first detect an object of interest in a 

frame, and subsequently track the same object in following frames to avoid double-

counting. Alternatively, a simpler algorithm could just classify whether particular 

sequences of frames in a video probably contains “content of interest”, and flag for 

further human inspection. By discarding irrelevant frames, the workload of the 

human inspector could be dramatically reduced. However, even the latter of these 

options is not a straightforward task. A computer does not necessarily ‘see’ an image 

in the same way humans do. Images are stored in computers as arrays of pixel 

values, usually with red, green, blue (and sometimes alpha or transparency) 

channels. Somehow, these values and the relationship between them need to be 

translated into lines and shapes which then need to be further translated into 

descriptions of objects to recognise such as animals or plants[1].  

 

Furthermore, computers do not automatically infer context in the same way humans 

do. For example, observing only the head of a fish in an image would usually be 

enough for a human to perform an identification. The human observer would infer the 

remaining part of the fish that is obscured or out of frame. Training a computer to 

accomplish the same task would require imparting some form of knowledge and 

understanding of what fundamentally constitutes a fish and then performing the 

same deduction through a programming script. 

  

There are many approaches to automating detection in images and video, but the 

overall task can be generally split into three parts[2]: 

 

● Object detection: Given an image, or a frame in a video, is there an area of 

interest in the image and if so, what part of an image does it occupy?  

  

● Object classification: Given an image/frame, or a subsection of that 

image/frame, what object (if any) is present?  

 

● Object tracking: Given an object has been found in an image/frame, can the 

same object be recognised in a subsequent image/frame?  

 

There exist numerous algorithms that have been proposed over the years that tackle 

one or more of the above tasks with varying degrees of success and with varying 

ranges of applicability.  
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Feature maps 

 

The fundamental backbone behind computer vision algorithms is that objects present 

in images can be summarised and described in the form of ‘feature maps’. A 

‘feature’, in the context of object detection, is a mathematical description of a part of 

the image that can range from being as simple as a prominent edge or corner, to a 

complex convolution process of a set of neighbouring pixels. Different algorithms 

adopt different methods for obtaining features, meaning a feature is not necessarily 

universal. Some algorithms look for local changes in raw pixel values while others 

apply mathematical filters to the image to generate new relationships between these 

pixel values. The ‘map’ represents the characteristic features and their spatial 

relationship that construct an object. For example, a rectangle is generated by two 

perpendicular sets of parallel lines. The features in this case would be the four 

separate lines and the map would be the amount of lines and their corresponding 

parallel or perpendicular nature. Thresholds can then be applied to determine how 

confident the algorithm is that there is a rectangle present. 

 

It is possible to manually construct feature maps to describe objects, although this 

rapidly becomes a complex and awkward process as any manner of object 

orientations and scales need to be incorporated into the map. Instead, the usual 

practice is to allow a feature detector algorithm to extract prominent features from a 

set of training examples and derive its own map. If the detector subsequently 

encounters a similar set and orientation of features on a test image it can assume it 

is the same object.  

 

Algorithms 

 

There are too many algorithms that have been created over the last few decades in 

the field of computer vision to investigate and comment on them all individually. 

Therefore, only the most prominent and successful ones will be presented here. 

Additionally, this report will limit the description of mathematical detail behind the 

algorithms to only necessary information, with references provided for readers who 

are interested in the mathematics that constitute these algorithms. If a more in depth 

look at the recent history of computer vision is desired, Zhang et al. provide a 

comprehensive review of the major techniques used in image classification[3].  

A list of the more prominent object detection, or feature detection, algorithms are 

described below: 

 

Scale-Invariant Feature Transform (SIFT)[4] was considered to be the best computer 

vision algorithm in the early 2000s. It creates features by detecting maxima and 
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minima from a difference of Guassians function. It generally performs the best in 

benchmark tests against other algorithms of a similar age[5]. However, the algorithm 

is patented in the United States, limiting its availability for commercial use. 

 

Viola–Jones object detection framework[6] is one of the earliest frameworks to 

provide consistent, real-time detections. It combines Haar features with AdaBoost 

training and classification to create a pyramid shaped detection set up whereby 

features are ranked by importance. This rapidly eliminates potential regions that are 

not similar to the object in question allowing for swift detections to be performed. 

 

Speeded Up Robust Features (SURF)[7] is a faster alternative to SIFT that uses a 

different set of feature descriptors based on the sum of the Haar wavelet responses 

around a specific blob detection (a region of varying contrast or colour). It also 

benefits from utilising the precomputed integral image to speed up the detection of 

features. However, like SIFT, this method is patented in the United States.  

 

Gabor Filters[8] look for patterns within an image by passing 2-Dimensional Gaussian 

filters and observe regions that have similar frequency responses to known patterns. 

This method works well for texture analysis and pattern recognition for object 

classification. 

 

Histogram of Oriented Gradients (HOG)[9] is a method that compares colour and 

contrast gradient slopes and angles over an image. Features are derived from a 

histogram of these gradients that can be compared to expected histograms from 

known objects. 

 

Oriented FAST and Rotated BRIEF (ORB)[10] is a method developed by the OpenCV 

(Open Computer Vision) library as a substitute for SIFT and SURF as they are 

patented methods. This method uses the FAST (Features from Accelerated 

Segment Test) algorithm to determine keypoints and then BRIEF (Binary Robust 

Independent Elementary Features) algorithm to create feature descriptors. Both of 

these algorithms have been modified to improve accuracy in rotated objects.  

 

Neural networks 

 

Until the early 2010s, all advances in computer vision relied on some modification, or 

incremental advancement, to one of the techniques in the previous section. 

Nowadays, the field has pivoted and almost all computer vision algorithms rely on 

neural networks instead.  
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Artificial neural networks 

 

Artificial neural networks (ANNs) are powerful pattern recognition algorithms that are 

loosely based on the architecture of a human brain. Various layers of nodes, or 

‘neurons’, are interconnected by weighting functions, shown in Figure 1. Each node 

takes a weighted input of all outputs from the previous layer and then returns a value 

between zero and one based on a sigmoid (or similar) function. This value is then 

passed onto every node on the next layer and so on until it reaches the output layer. 

Here the value can be converted into a class probability, for classification problems, 

or to a value via an external function, for regression problems.  

 

 
 

Figure 1: An example of a small, two-layer neural network with two input values (x1, x2) and two 
output values (y1, y2). Every black line (45 in total) corresponds to a connection with a trainable 
weighted value.  

 

However, for these networks to work, the weighting values for each neuron 

connection have to be determined. This is achieved through a training process 

whereby known inputs are plugged into the network and the outputs are compared to 

the expected outputs. A correction function, called backpropagation, is then applied 

to all the weights in the network to adjust them slightly. This process is repeated 

numerous times until the outputs match the expected ones.  

 

The concept of ANNs has been around for decades, but the technological 

requirements to train and apply them effectively were beyond the capabilities of most 

computers until the late 2000s. Since then, almost all machine learning tasks 

incorporate some form of neural network, yet there is no single architecture (i.e. 

number and size of layers) that applies to every task, and researchers are constantly 

developing new methods and orientations.  

 

Convolutional neural networks 

 

Convolutional neural networks (CNNs) are a particular branch of ANNs focused on 

deriving features and patterns from an array like input, such as an image. Their basic 

structure consists of one or more convolution and pooling steps feeding into a 
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layered ANN, as shown in Figure 2. These convolution stages allow the network to 

extract arbitrary features from an image which can then be used for training an ANN 

to classify as objects. However, each sample of pixels creates another connection 

that requires a weighted value. Therefore, covering an entire image makes training 

highly computationally expensive due to the size of the resultant network. 

 

 

 
 
Figure 2: An example of the architecture of a convolutional neural network. The convolutional stage 
takes the weighted sum of neighbouring pixels in different configurations and forms new ‘image’ 
layers from the results. The pooling layer then condenses these layers into fewer ‘image’ layers 
through averaging or taking the maximum values. This process can then be repeated multiple times 
before flattening the image into inputs for a classification ANN. 

 

Prior to the adoption of CNNs in computer vision, most solutions were built on 

variations of SIFT, SURF and other presented in the previous section. Regular 

competitions were held to showcase these cutting-edge algorithms by attempting to 

identify a variety of objects in thousands of pictures. One of these was the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC)[11]. In the 2012 ILSVRC, a 

convolutional neural network called AlexNet[12] beat the runner-up algorithm by an 

unprecedented ten percentage points and was the first team ever to score above 

75% accuracy.  (AlexNet achieved 84.7% precision)[13]. This sparked a paradigm 

shift as research focus in the field shifted almost entirely towards CNNs, yielding 

dramatic improvements in accuracy over previous algorithms. In the 2017 ILSVRC, 

all teams incorporated some form of CNN into their methodology and 29 out of 38 

teams scored above 95% precision[14]. 

 

As before with the ANNs, there is no single architecture that provides a solution and 

researchers are continually developing new ones. The complexity of these models 

grows exponentially with researchers combining different types of network together 

to form new ones. With that, the computational load to train and execute these 
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networks increases too. Today, researchers rely on the increased computational 

output provided by Graphical Processing Units (GPUs) as compared to traditional 

Computational Processing Units (CPUs). GPUs are optimised to perform many small 

calculations in parallel (such as calculating pixel values for faster graphical 

rendering) whereas CPUs are designed to perform more complex calculations in 

series. As the updating of weight functions in neural networks is a relatively cheap 

task computationally, the training process can be sped up by running it on one or 

more GPUs. 

 

Drawbacks to CNNs 

 

Although proven to be very powerful in the field of object detection, there are a 

couple of drawbacks to CNNs as compared to the simpler non-CNN based 

algorithms. Primarily, the resultant trained model becomes a black-box processor, 

meaning it is very difficult to interrogate the model as to why it has provided a certain 

output. This makes debugging the system next to impossible. Usual practice is to 

generate many models with a variety of parameter inputs and then select the one 

that returns the best results. 

 

The correct architecture for a CNN is a topic of considerable academic research and 

there is no consistent correct answer, only certain architectures that have been 

shown to perform well in certain tasks. Luckily, these can usually be taken and 

adapted for other tasks. Sometimes, solutions require a combination of various 

different CNN architectures to work in collaboration. Similarly, model performance is 

reliant on data provided, but exactly how much and what quality that data should be 

is unknown. A general rule of thumb is “more data is better”, but the benefits from 

increased data plateau after a certain amount.  

 

Development of a CNN solution tends to involve iterative experimentation to 

determine what available technologies and algorithms are suited to the task at hand. 

Once a model has reached an adequate level of accuracy, it is deemed acceptable, 

even if the underlying reasons for why it is performing well remains unknown. This 

overall process can sometimes be considered more of an art rather than a science. 
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Computer vision in underwater video 

 

Introduction 

 

With a wealth of video being produced from various marine environmental and 

aquaculture practices, a number of attempts to incorporate automated detection of 

aquatic life has been performed over the years. 

 

In particular, fish monitoring and counting are popular focuses for automation tasks. 

Examples include fish aquaculture industries looking to improve data acquisition by 

incorporating machine learning algorithms into their monitoring techniques[15, 16]. 

Jovanović et al. demonstrate how to automatically monitor for splashing in fish pens 

using surface cameras[17]. Williams et al. were able to develop an automatic 

detection and measurement algorithm for fish in a trawl from stereo cameras[18]. 

However, tracking of individual fish still had to be performed manually. 

 

A report of the 2010 National Marine Fisheries Service Automated Image Processing 

Workshop[19] indicated that the direction of computer vision in underwater images 

followed the same trends of the time. Most algorithms focused on the current feature 

extraction methodologies, such as SIFT or shape contours, which struggled with 

complex, non-uniform backgrounds. The workshop mainly focused on fish 

identification and classification in images, with only two of the eight presentations 

from invited experts discussing identifying other marine life.  

 

Algorithms used in literature 

 

An overview of trends in fish detection as of 2013 is given by Shortis et al.[20]. Even 

though it focuses on stereo-video footage, many of the applied techniques would 

work on single-camera video as well. It summarises three techniques by Spampinato 

et al.[21], Khanfar et al.[22], and Charalampidis et al.[23] and then proposes a general 

model architecture based on the more promising techniques. A similar methodology 

is incorporated by Westling et al.[24] to measure fish with a stereo camera and 

Lantsova et al.[25] for identifying fish in low quality video. 

 

In the papers mentioned above, the typical workflow to identify fish in underwater 

video comprises of the following steps: 

 

1. Establish a background by averaging or processing frames without any fish 

present.  
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2. Detect regions where a fish might be, generally by using a comparison with 

the background frame among other techniques. 

 

3. Check if region contains a fish through a combination of feature comparisons 

colour histograms and/or contour fittings. 

 

4. Check if two or more fish occupy the same region in frame (this step is highly 

complex and difficult to perform rigorously, therefore it is usually omitted). 

 

5. Classify the type of fish using further feature comparisons against a database 

of fish of interest. 

 

6. Measure fish if stereo camera is in use by comparing lengths between head 

and tails. Sometimes multiple measurements are averaged due to the 

contortion of fish as it swims. 

 

7. Track fish in subsequent frames to prevent multiple counting by predictive 

positioning, usually by incorporating Kalman filters. 

 

It can be seen that these workflows follow the general 

Detection/Classification/Tracking framework incorporated by most computer vision 

algorithms. The feature comparisons are generally performed with a Viola-Jones 

object detection framework[26]. 

 

Image enhancements, such as colour balancing[27, 28], tend not to be incorporated as 

a step in these models. These enhancements generally only benefit the human 

interpretation of the image. Background subtraction and feature detection algorithms 

generally work by comparing the relationship between pixels. These relationships 

are generally preserved in the context of colour histogram stretching[29] and 

brightness/contrast enhancement[30]. Similarly, two frames processed using the 

same enhancements should display the same foreground/background appearances, 

meaning detecting changes for background removal should be the same regardless 

of whether it has been enhanced or not. Unless the enhancement applies some 

complex, conditional, non-linear filter, they are considered unnecessary in the 

context of computer vision.  

 

Convolutional neural networks 

 

In recent years CNNs have also been applied to the task of detection[31, 32] and 

classification[33] of marine life with promising outcomes. Modern object detection 
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algorithms allow for both regional detection and simultaneous classification within the 

same architecture[34, 35], which would allow for both identification and counting of 

aquatic life in underwater video. Initial forms of this have been attempted by tracking 

detections in subsequent video frames using SURF features[36] and CNN features[37]. 

However, the results tracking metrics are not presented clearly so it is unclear how 

well these perform.  

 

Many software applications have started to incorporate CNNs and machine learning 

into their workflow to facilitate the process of detecting and annotating aquatic life in 

images and video. Annotation software such as BIIGLE, CATAMI, and Squidle 

incorporate some form of automated object identification or classification[38]. 

However, these applications are primarily designed for images and not video. 

 

The automated processes in CATAMI and Squidle focus on classification of images 

or other media via suggestions, but actual annotation has to be performed manually. 

They also serve as a repository for storing data and allowing further collaboration 

with other researchers. BIIGLE contains a CNN to detect potential objects of interest 

automatically in the image set provided. Rather than classifying the image, this 

method actually detects and bounds the objects as well. Refinement and 

confirmation of the detection also has to be performed manually. CoralNet is another 

web-based software for classifying images of coral reefs and other biological 

growths[39], which also has an inbuilt CNN classifier to assist annotation of images. 

This was shown to be effective in assisting with assessing biodiversity of offshore 

pipelines in the North Sea[40]. 

 

FishTick is a software system built by Salmonsoft which is used for fish counting in a 

variety of locations. The current version of the software only allows for automated 

tagging frames to be subsequently reviewed by an operator to count the fish 

manually. In 2016, they developed a machine learning feature to automatically detect 

and measure fish passing through video. Unfortunately, this has not currently been 

brought forward into development and is not available in their current version (v3). 

The developers have stated than in their upcoming version 4.0 they will offer an 

embedded hardware solution to process object detection and tracking, with the end 

goal being for the system to be able to classify species, detect features and perform 

fully automated counting.  

 

The developers of CoralNet have also developed an all-inclusive environment for 

allowing researchers to develop computer vision pipelines for their data, called 

VIAME (Video and Image Analytics for a Marine Environment). This platform hosts a 

variety of algorithms that can be used to detect and annotate images and video and 
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also measure subjects. There is a modular framework that allows for customisation 

of workflows and once models have been trained, the process can be automated. 

Whilst still under development, VIAME holds a lot of potential for addressing this 

problem space. 

 

Competitions 

 

In 2017, two online competitions were held by the US Nature Conservatory 

concerning the detection and classification of fish in video. The first, called “The 

Nature Conservancy Fisheries Monitoring”, hosted by Kaggle and with a prize pool of 

US$150,000, aimed to identify what type of fish (out of a selection of six) were 

present in each frame from the video footage from a variety of boat cameras[41]. The 

second, called “N+1 fish, N+2 fish”, hosted by DrivenData with a prize pool of 

US$50,000, aimed to identify, count and measure the length of fish discarded by 

New England trawling vessels[42]. In both competitions, the footage used comprised 

of a variety of different boats and viewing angles which had to be taken into account 

by the algorithm. 

 

The latter of these competitions, “N+1 fish, N+2 fish”, went on to publish the five 

winning entries in an open source format[43], allowing an insight into the current top-

of-the-range algorithms used for these types of tasks. All five of these entries 

incorporated CNNs into their algorithms, although their approaches to the task varied 

greatly. For instance, the winning entry first implemented a CNN to identify the ruler 

used to measure fish in the frame, and then subsequently used another CNN to 

identify and measure fish on images reoriented about this ruler. The second-place 

entry, however, searched for the fish directly in each frame, and then used 

subsequent CNNs to extract information on a cropped augmented image of the fish. 

Additionally, the architecture of the CNNs themselves varied between entries, 

demonstrating that there is not necessarily a singular approach to this problem 

domain. The second-place entry included a flow chart of their methodology, shown in 

Figure 3. This entry incorporated twenty neural networks of four different types into 

their final algorithm for detecting, counting and classifying fish. 

 

Accuracies for the winning entry were given as follows: 

 

“The winning algorithm alone achieved above 90% identification accuracy across 5 

of 7 species, and 99% accuracy for three species. Meanwhile, predicted counts were 

within just 1 fish – on an average of 44 fish per video – 83% of the time, and the 

average error in length was under 2%.” 
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This demonstrates that these methods, although intricate and powerful, are not 

currently 100% accurate, especially for tasks that involve a large range of 

parameters. In controlled environments, such as identifying and counting fish on a 

conveyor belt, simpler algorithms can yield >95% precision[44]. However, these tend 

to be very task specific and lack the versatility offered by the competition algorithms 

that had to deal with varying camera locations and lighting effects.  

 

 
 
Figure 3: A flow chart describing the methodology for the second place entry in the “N+1 Fish, N+2 
Fish”. This methodology incorporated 20 CNNs for identifying and classifying fish in the videos. 
Classifying and Training coloured boxes added by the current author. Original image taken from 
https://github.com/drivendataorg/n-plus-one-fish/tree/master/2nd-place. 

 

Review of models for case study 

 

Introduction 

 

In addition to presenting the current technologies available for this problem space, 

the objective of the case study is to demonstrate the available algorithms in a 

working environment. Although research publications present methods that are 

successful in detecting fish in underwater video, it is rare to find them available in an 

open-source or in a ready-to-use format. Additionally, the results they present tend to 

https://github.com/drivendataorg/n-plus-one-fish/tree/master/2nd-place


26 

 

be specific for the environment in question and do not necessarily represent a 

general-purpose solution. Therefore, this case study will attempt to produce a 

methodology that is accessible and can be recycled for further use by aquatic 

researchers. 

 

To make it accessible, and due to the short timeframe of the project, it was decided 

that focus would be put on currently available open-source solutions to allow the 

rapid generation of simple working end-to-end pipelines upon which tests can be run. 

These pipelines are relatively simple compared to competition winning methods, 

shown in Figure 3, that are highly specialised to a single task, therefore, they serve 

to illustrate what can be performed and indicate what technologies are suitable for 

further development.  

 

Available platforms not incorporated into case study 

 

There are a number of other open-source platforms available that could have been 

used in this case study, but these were not trialled, due to limitations in their method 

or complexities in their acquisition. 

 

FishTick 

 

Although widely used, FishTick by Salmonsoft was not included here due to the 

current version not possessing the ability to automatically count targets. Various 

sources and video demonstrate its frame tagging capabilities in a narrow, controlled 

environment but the methodology is not flexible and is only suited for a specific task. 

Although the developers indicate that new machine learning tools will be 

incorporated in the future, they were not available for this case study. 

 

BIIGLE 

 

BIIGLE is a web-hosted platform that only requires a registration to access. 

Unfortunately, it does not support hosting data without specific permissions, so that 

task has to be performed by the user which is not always simple, especially with 

sensitive data. Once data is hosted and accessed through the BIIGLE interface, 

annotation is simple and straightforward. Accessing the neural network annotation 

assistant is also straightforward but the actual processing that is performed is hosted 

on a separate server. Simple tests of a few images then took multiple hours to return 

with annotation suggestions, with multiple iterative steps required in between. 

Although the suggestions were good, the time that would be required to process 

hundreds of frames of video makes it inadequate for this task.   
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VIAME 

 

VIAME appears to be a platform to host all the different pipeline tasks in a single 

location, with interface tools designed to assist in all forms of annotation and 

identification. However, the installation of the software was not straightforward and a 

suitable version of the software could not be obtained. From the tutorial videos, the 

interface looks highly dense in that there are many required options and selections 

required to perform tasks such as annotating data and training a CNN. This software 

is still under development and so these steps may be simplified in the future but it in 

its current state it does not appear accessible to an untrained user.  

 

Online service portals 

 

There are various portals online provided by companies like Amazon, Google and 

Microsoft that allow training and managing object detection and classification 

networks by supplying images and data alone, extracting out the complexities 

involved with developing and training the CNNs. However, these were avoided due 

to the monetary cost associated with training and subsequent analysis of a large 

number of images when free alternatives exist. The Rekognition tool from Amazon 

allows for video analysis without prior decomposition into individual frames, but it 

only allows processing using provided algorithms, such as facial recognition, and not 

custom trained models. However, the cloud computing platform, Amazon Web 

Services (AWS), was utilised in the case study to expedite processing times. 

 

Chosen platforms for case study 

 

This section outlines the various platforms and algorithms that were incorporated into 

the case study. As mentioned above, the feature detection algorithms chosen for this 

case study represent those that could be easily incorporated into a working pipeline. 

For the sake of balance, it was also decided that versions of older algorithms, such 

as SIFT and SURF, should be included alongside the more modern CNN algorithms. 

However, it would be an inefficient use of time and resources to attempt to create 

custom versions of these algorithms so it was necessary to seek out and adopt 

available, open source implementations. 

 

Open CV 

 

The OpenCV (Open Computer Vision) library contains a wide variety of processing 

tools for image manipulation and computer vision, including implementations of SIFT 

and SURF (however, since these are patented, they are only supported until 
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OpenCV version 3.4.2.16, which was used in this case study). Due to the open 

source nature of the library and the Python code interface it offers, OpenCV provided 

an efficient platform on which to build quick and simple workflows for image 

processing and object detection. In addition, due to the SIFT and SURF algorithms 

being patented, OpenCV offers a similar, but open source, variation of these 

algorithms called ORB (Oriented FAST and Rotated BRIEF). These three feature 

detection algorithms were chosen to compare against the CNN algorithms.  

 

Object detection API (TensorFlow) 

 

For the CNN implementation, TensorFlow by Google offered a wide range of 

capabilities for developing machine learning models and pipelines. Additionally, 

researchers have created an Object Detection API[45] to facilitate rapid production 

and prototyping of certain models with many examples to choose from, making it 

easy to implement into our working pipeline. This is similar to the approach 

performed by Piechaud et al.[35]. Using TensorFlow as a platform, three types of 

CNN were chosen to take forward to the case study. The first, Faster Region-based 

Convolutional Neural Networks (FRCNN)[46], is considered to be one of the more 

accurate networks available but tends to have a slower performance speed. The 

second, Single Shot Detector (SSD)[47], is a very fast network, used mainly for 

detecting objects in live video, but suffers from lower accuracy. The third, RFCN 

(Region-based Fully Convolutional Networks)[48], claims improved accuracy from 

FRCNN with comparable performance speed.  

 

The Object Detection API hosts a number of these models (known as a model ‘zoo’) 

from which we can download pre-constructed versions of these models. There are 

various versions of each model type to choose from, so versions that represent a 

balance between speed and accuracy were chosen. The specific models chosen are 

listed in Table 1. 

 

Table 1 
 
The names of the CNN models chosen from the Google Object Detection API model zoo found at  
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_
zoo.md. 
 

 

Model Object Detection API Name 

FRCNN faster_rcnn_inception_v2_coco 
SSD ssd_inception_v2_coco 

RFCN rfcn_resnet101_coco 

 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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A notable omission from the chosen networks is a CNN called YOLO v3 (You Only 

Look Once)[49] which has demonstrated both high speed and accuracy in a variety of 

tasks. It is also the algorithm incorporated into the VIAME processing toolbox. 

Unfortunately, the developers implemented this CNN in their own proprietary 

software format, called Darknet, which was incompatible with the TensorFlow 

pipeline platform and would have been too complex to train and implement 

independently within the scope of the project. Future research should certainly 

incorporate this algorithm into any tests performed. 

 

DeepSORT (object tracking) 

 

While various object tracking algorithms exist in OpenCV using a variety of methods, 

preliminary testing showed that none of them could match the capabilities provided 

by a third-party algorithm called DeepSORT[50] (which is not included in OpenCV). 

The DeepSORT algorithm combines a multitude of tracking algorithms, such as 

Kalman Filters, with a neural network to keep track of detected objects, and it refines 

its predictions based on frame by frame detections. This method works well retaining 

the detection if objects became obscured and recognising objects across multiple 

frames if the detection algorithm failed.  

 

Feature detection training -pipelines 

 

The chosen feature detection algorithms all required training on the data that was to 

be used in the case study. This involved two steps: converting the provided videos 

into trainable image sets and annotations, and creating the pipelines for the training 

algorithms.  

 

Extracting images and annotations 

 

A couple of hundred frames that contained the objects in question were extracted 

from the videos as images using the open source video conversion tool, FFMPEG. 

Due to interlacing in the videos causing a combing effect, as seen in Figure 4, a 

deinterlacing filter, called YADIF (Yet Another DeInterlacing Filter), was applied as 

these images were extracted. 
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Figure 4: Left: an example extracted frame depicting the combing effect that appears from unfiltered 
interlaced video. Right: the same frame after filtered using YADIF filter in FFMPEG.  

 

These images were then inspected and annotated manually using custom software 

to produce locations of objects of interest. This involves describing a box that 

identifies the pixels in the image that contain the object of interest, usually in some 

form of [X, Y, width, height] as shown in Figure 5. The best practice involves 

depicting the object of interest in a variety of positions, scales, and backgrounds, and 

in some cases having certain features obscured. This can help prevent overfitting of 

training data where the models do not generalise the features and therefore cannot 

predict well in practice. Around 200 images of aquatic flora/fauna appear to be 

sufficient for training[35]. There exists a multitude of programs for performing this 

annotation step open-source (such as LabelIMG and LabelMe) which could have 

been used in place of the custom software developed for this task. However, 

creating this software allowed rapid interfacing with the following sections of the 

training pipeline.  
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Figure 5: Left: An example of a bounding box annotation of a fish. The data for the box is stored as 
an [X, Y] coordinate in pixels representing the top-left corner of the box, along with the width and 
height of the box in pixels. Multiple boxes can appear in a single image. For improved training, 
multiple examples of the subject should be given in a variety of poses. It is good practice to get the 
subject at different orientations, with different levels of obstruction, and at different scales, as shown 
in the bottom row. Right: An example of the custom annotation software used in action, tagging the 
pixels in a frame that represent an instance of a salmon smolt.  

 

This step involves the most manual intervention from the user in the pipeline, but it 

only has to be performed once for each dataset. All existing feature detectors, even 

those outside the focus of this study, use a similar input format making the resultant 

annotated datasets valuable for reuse. A recommended action should be to 

document and store created image/annotation pairs in a database. Platforms such 

as BIIGLE and CoralNet are offering this as a service so that data can be transferred 

easily between researchers around the globe and more powerful models can be 

trained. 

 

Training pipeline: Bag of visual words  

 

The SIFT, SURF, and ORB feature detectors cannot classify by themselves and 

require a framework to convert their outputs into recognisable and trainable features. 

To accomplish this, a custom pipeline using a Bag of Visual Words (BoVW) 

methodology was created.  

 

The BoVW method is based on the ‘Bag of Words’ method for classifying text 

documents. If a document is broken down into its individual words, then they can be 

classified based on the occurrence and frequency of certain words. In the case of 
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“visual words”, descriptive features of an image, such as edge shapes and colours, 

take the place of the words.  

 

Figure 6 gives an overview of the BoVW method used in this case study. To train this 

model, the feature detectors first sample all the examples (along with some null 

examples of only background) and extract feature vectors from each. These are then 

clustered in a K-Nearest Neighbours (KNN) classifier to create standard ‘words’. This 

set of standard ‘words’ then forms the feature ‘dictionary’ from which all features will 

be defined. For each example (and null example), the detected features are then 

classified in the KNN classifier and the number of words are counted in a histogram. 

This histogram forms a feature vector of the example.  

 

 
 
Figure 6: A summary of the Bag of Visual Words (BoVW) model used in this case study.  

 

At the same time, three similar feature vectors are formed using histograms of pixel 

colour values in the red, green, and blue channels from the example image. These 

form feature vectors describing the colour of the object in question. 

 

The four vectors are combined and fed into a classifier (a Random Forest network in 

this example) which is trained to distinguish between vectors belonging to the 

examples and those that do not. Once trained, any example image can be 

processed by creating the feature and colour histograms and passing that through 

the classifier. 
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Training pipeline: Convolutional neural networks 

 

Training a CNN from scratch requires substantial computational time and data in 

order to create weights in the initial convolution stages of the models. However, it 

has been shown that the feature weights trained by a model on certain generic 

objects (such as cars and people) can be reused to classify other objects. Therefore, 

only the classification stage at the end of these models requires re-training if they are 

to be repurposed. This is known as ‘transfer learning’.  

 

The Google Object Detection API already contains a basic pipeline for re-training 

CNNs via transfer learning with custom annotated data. Minor additions were added 

in order to streamline the process. This resulted in a single step for training these 

models which was to curate the example images and annotations into a single folder 

and then execute the provided training code. 

 

Although transfer learning is faster than training all levels of the CNN, to achieve 

sufficient accuracy, models had to be left to train overnight on a laptop. This process 

could have been quickened substantially by incorporating a GPU enabled laptop or 

cloud instance. However, these were not available during this stage of the case 

study.  

 

Unlike the custom BoVW training, the CNN training is iterative and various levels of 

progress can be visualised in the TensorBoard suite, also provided by Google. This 

allows for early termination of training if it can be seen that there has been no 

improvement over the last few iterations.  

 

Object detection pipeline 

 

This section outlines the framework for the object detection algorithms once the 

feature classifiers have been trained. An overview of the algorithm is presented in 

Figure 7 and a more detailed flowchart is shown in Figure 8. Each entry in Figure 7 is 

described in more detail in the following sections. 

 

Frame extraction 

 

OpenCV contains a tool for reading videos frame by frame which is used to convert 

the video to processable images as needed. However, some video is saved in an 

interlaced format which creates a combing effect (as shown in Figure 4) when read 

directly. Therefore, the video has to be deinterlaced initially to allow for processing 
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which is outside the capabilities of OpenCV. Instead, the whole video needs to be 

converted using FFMPEG and the YADIF filter. 

 

Background subtraction 

 

Two methods from OpenCV were used to perform the background subtraction: 

OpenCV MOG2 and OpenCV KNN. Both these models operate by taking a sample 

previous frames and developing a predictive model for background pixels, a Mixture 

of Gaussians (MOG) model in the former and a K-Nearest Neighbours (KNN) model 

in the latter. Foreground pixels are those which fall outside these predictive models 

which are constantly updated as frames progress. OpenCV MOG2 worked best with 

a static background, such as the fish trawl video, when adopted with a large history. 

However, it did not function well on a moving background, such as the seabed rig. 

Instead, OpenCV KNN performed much better on the moving background with a 

short history but not well on the static background.  

 

 
 

Figure 7: An overview of the object detection pipeline used in this case study. 
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The output of the background subtraction algorithms was generally noisy so further 

filtering was applied to reduce this. The number and frequency of the filters were 

determined through a manual trial and error method with various combinations of 

filters. Once the output appeared sensible, this process was fixed for the remainder 

of the case study. An initial median filter (9x9) was applied to remove noise specks, 

followed by five loops of dilation (5x5), closing (7x7), erosion (5x5), then opening 

(7x7) to close gaps in the remaining regions (the numbers in brackets represent the 

pixel kernel size for the operation). 

 

ROI thresholding 

 

The remaining regions underwent an additional thresholding to determine whether 

they were of sufficient size to pass onto the feature detection stage. This again was 

an arbitrary choice through trial and error to obtain a good balance of region de-

selection. The minimum height and width of a region both had to be at least ten 

pixels in length in addition to the total rectangular area being greater than 200 pixels. 

 

If the region passed thresholding, an extra 20 pixel boundary was added to the 

region prior to passing it to the feature detector to ensure all elements of the object 

were included in the region. 

 

Feature classification 

 

One of the five pre-trained feature classifiers are applied to the image, the 3 BoVW 

models (SIFT, SURF or ORB based), or the three CNNs (FRCNN, SSD, RFCN). In 

the case of the BoVW models, all of the remaining regions are passed individually to 

the classifier to determine whether the region contains an object of interest. 

However, in the case of the CNNs, each one contains its own method of ROI 

selection, therefore the regions created from the background subtraction and 

subsequent thresholding are discarded. In these cases, they only serve to determine 

whether a frame is worth investigating or not. In the absence of any regions of 

interest, the CNN would not be called to save time as it is computationally expensive.  

 

The resultant regions containing objects of interest (if any) are then passed onto the 

object tracker. 

 

Object tracking 

 

The DeepSORT algorithm was attached to the end of the pipeline to assess 

detections and track objects of interest between frames. In addition, a frame tagging 



36 

 

system was implemented to log times when objects of interest are detected for future 

manual inspection by a person. Although not a fully automated counting system, this 

method would dramatically reduce the work time of manual inspection by eliminating 

the majority of unnecessary frames. To filter out many false positives from debris, a 

second of footage is only tagged if it contains a detection in a minimum of three out 

of five sequential frames. 

 

 
 

Figure 8: A detailed flowchart of the algorithms and programs used in the object detection pipeline.  

 

Case study 

 

This section describes the execution and results of the case study. Various video 

clips were extracted for analysis by the different models described in the previous 

section. Both quantitative and qualitative analysis is provided to describe the 

effectiveness of the tested models. Only a short amount of video data could be 

analysed in the timeframe permitted, therefore, this case study serves as a feasibility 

study into the effectiveness of current computer vision technologies in this problem 

space, rather than providing a final solution to the problem.  
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As mentioned in the previous section, only algorithms that could be integrated rapidly 

into the pipeline were taken forward to the case study, meaning there may exist 

more advanced versions that would perform better in these scenarios. Additionally, 

the quantitative results depicted here are only a representation of the performance of 

the models and should be used as an indication of their potential rather than exact 

benchmarks. Variations of training data quantity and quality, as well as variations in 

model architecture, might serve different scenarios better or worse.  

 

Training models 

 

All models were trained on frames not included in the case study videos. A 

combination of ~300 frames from various videos were combined for each model. 

Frames were extracted from the videos using the open source software FFMPEG 

using the YADIF deinterlacing filter and saved as JPEG images. For the CNN feature 

detections, the frames and images were automatically reduced to have a maximum 

dimension of 1024 pixels, except for the SSD model which has a maximum 

dimension size of 300 pixels.  

 

For training the CNNs, the frames were randomly split 70%/30% into training and 

testing sets respectively in order to prevent overfitting of the data. Training progress 

is monitored by applying the current model iteration to the training set and assessing 

the accuracy. The model is considered trained once this accuracy plateaus. To 

achieve this, the models are individually left to train overnight.  

 

For the BoVW model, the same 70% of data is applied for training but does not 

undergo multiple iterations and therefore the 30% testing data is not used. Training 

of the BoVW models were completed within 10-15 minutes.  

 

However, the BoVW models generally returned high numbers of false positives on 

areas that were not objects of interest. This included areas such as a bright reflection 

off the netting and the clock time printed on the frame. To rectify this, sections of 

video with no objects were processed with the BoVW model and all instances of 

false positives were saved. These were added to the training data and the BoVW 

model was retrained to refine the classification step to ignore these regions. 

 

Detection measurements 

 

The various models were run on each of the videos independently, with each 

generating listed outputs from the frame tagging and DeepSORT algorithms. 
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Additionally, an annotated video visualising the detections was produced for each 

model to manually determine the accuracy of these outputs.  

 

In each case the number of true positives (TP) indicate correct counting and 

identification of objects in video. False negatives (FN) indicate objects that should 

have been detected but were missed. False positives (FP) indicate instances where 

wrong frames were tagged or wrong objects were tracked. In the case of the 

DeepSORT algorithm, there were instances where object tracking was lost and then 

reassigned a new value, creating multiple counts (MC) for each object.  

 

In addition, overall metrics are used to compare the performance of each model. 

These are the measures of ‘precision’ and ‘recall’ which are given in Equations 1 & 2 

respectively. Precision represents how sensitive a model is to similar looking objects, 

and recall represents how well the model is able to detect objects in the 

environment. These were measured using the total counts across all of the five 

videos. 

 

Precision = TP / (TP + FP)  Recall = TP / (TP + FN) 

Equation 1: Precision accuracy, 
given by percentage of positive 
instances detected out of the total of 
all positive detections (both true and 
false). 

 Equation 2: Recall accuracy, given 
by percentage of positive instances 
detected from all possible true 
instances. 

 

Fish detection, classification and counting 

 

A large proportion of research for computer vision in underwater environments goes 

to fish counting and fish species identification. For the case study, models were 

trained primarily to identify and count Atlantic salmon (Salmo salar) smolts passing 

through a camera box attached to a specially designed, near-surface trawl net. 

Various other animals and debris are also present, so it is important that the model 

can detect and track smolts specifically. Furthermore, the models were 

simultaneously trained on two types of fish, smolts and European sprats (Sprattus 

sprattus), shown in Figure 9, to determine whether the models could distinguish 

between them.  
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Figure 9: Left: an example frame showing the background of the trawl video used for training and 
testing. Right, top: An Atlantic salmon (Salmo salar) smolt, the main fish of interest in this case study. 
Right, bottom: A European sprat (Sprattus sprattus) used for testing the classification capabilities of 
the models. 
 

The trawl videos were recorded by Marine Scotland Science on board both the RV 

Scotia and the fishing vessel Sunbeam FR487 during several research voyages to 

capture salmon smolts over a period between 2017-2019. Trawls took place on the 

east coast of Scotland, from south of the Firth of Forth to near Orkney. This work 

was undertaken to attempt to identify salmon migration routes in the context of the 

development of marine renewable energy. 

 

For training the fish detection and classification algorithms, frames were extracted 

from the available footage contained either smolts, sprats or neither. Smolts and 

sprats were given separate classes for the purposes of classification upon detection.  

 

A set of six short videos were extracted from the available footage (that did not 

contain any training frames) to assess the performance of the various models, 

shown in Table 2. Although Video 6 contained too many fish to accurately count 

manually, this video only served for testing processing speeds for large numbers of 

objects and the classification accuracy of models so the exact number of fish present 

was not needed. 
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Table 2 
 
Video segments used for fish detection and counting model comparison. Processing Times. 

 

Video  
Length 

[mm:ss] 
Flora/Fauna 

# Objects 
(manually 
counted) 

Notes 
 

1 01:00 Smolt 1 
Single smolt but appears only on 5 

frames. Rest of video is clear. 
 

2 01:00 Smolt 1 
Single smolt over ~10 frames. Rest 

of video is clear. 
 

3 01:00 Smolt 2 
2 individual smolts sightings. 

Moderate amounts of debris in rest 
of video. 

 

4 01:00 Smolt 6 
2 individual smolts sightings. 

Moderate amounts of debris in rest 
of video. 

 

5 00:15 Smolt 12 
Many smolts passing through 

simultaneously. Testing tracking 
accuracy for counting. 

 

6 00:10 Sprat Many 
Many sprats passing through (too 
many to count manually). Testing 

fish classification accuracy. 

 

 

For Videos 1-6, all processing times for each BoVW and CNN algorithm were 

benchmarked on a GPU enabled laptop (Laptop specifications: Intel Core i7-7700HQ 

CPU @ 2.80GHz, 16GB DDR4 RAM @ 2400MHz, GeForce GTX 1050 Mobile 

GPU). Additionally, the CNNs were also benchmarked on an AWS cloud instance 

(AWS Cloud Instance specifications: 6 vCPU custom Intel Xeon Scalable Skylake @ 

2.5GHz, 61GB RAM, NVIDIA Tesla V100 GPU). The results for these benchmarks 

are shown in Figure 10.  

 

For Videos 1 & 2, processing times across all models are similar. This is due to the 

fact many frames were empty, meaning the feature detectors were not run and the 

overall processing was similar in all cases. However, in Videos 3 & 4 the processing 

times start to diverge as there was more debris and objects in the frames triggering 

more instances of the feature detection process. This is most notable in Video 6 

where processing times were generally multiple times the length of the video in all 

cases due to every frame contain many objects to track. 
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Figure 10: Process times for the various algorithms running through the case study videos. For the 
CNN algorithms on the left, the times cloud times denote the processing time running on an AWS 
cloud instance. All other times were measured when running on a GPU-enabled laptop. The FRCNN 
and RCFN speeds were improved when using a more powerful cloud instance; however, the SSD ran 
slower. This is most likely due to the model not being optimised for that environment.   

 

The processing times for the BoVW models is generally longer than the CNN 

models. This is most likely due to the fact the BoVW models are not optimised for 

GPU operations and do not take advantage of the hardware. For the CNNs, the 

RCNN and RFCN models performed better on the cloud instance whereas the SSD 

model performed slightly worse. Again, this might be due to the SSD model not 

being optimised for performance on the cloud hardware. However, on the laptop, the 

SSD model performed the fastest.  

 

No model was able to complete the analysis faster than the length of the video. This 

means that live analysis of this footage type would not be possible using these 

pipelines. However, the computation time could be reduced by skipping frames or 

running multiple instances of the pipeline in parallel. The current CNN methods are 

limited to running on a single GPU instance; increasing the number of processors 

does not improve performance. However, if designing these networks from the 

ground up, it would be possible to include the option for more parallel processing that 

would potentially enable real-time analysis. 



42 

 

Detections 

 
Videos 1-5 

 

 
 

Figure 11: Fish detections in Video 1-5 using the FRCNN model. Detections from this CNN are 
shown as green boxes. The white boxes are from the DeepSORT tracking algorithm. The green 
number refers to the DeepSORT identification given to the tracked instance and does not necessarily 
reflect the count of instances.  

 

As the background of the trawl videos remained predominantly static, the OpenCV 

MOG2 background subtraction method was used. The detection pipeline shown in 

Figure 8 was implemented with both frame tagging and DeepSORT tracking 

operating simultaneously.  

 

Examples of processed frames are shown in Figure 11. The detection results for 

Videos 1-5 are given in the tables above (Table 3 - Table 7). Additionally, the overall 

metrics for each model over these five videos are given in Table 8.  

 

In terms of frame tagging, all the CNNs had no false positives and so scored 100% 

precision. The FRCNN and RFCN models also scored 91% and 95% respectively for 

frame tagging recall displaying an almost perfect solution to this problem. The SSD 

showed much lower recall most likely due to the low pixel resolution it uses. The 

FRCNN model also scored highly for the DeepSORT tracking algorithm whereas the 

RFCN did not. This was due to the fact the RFCN model kept dropping detections 

every few frames, meaning that, although the frames were tagged, the DeepSORT 

algorithm could not track the instances effectively.  
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VIDEO 1 
Detections 

 
VIDEO 2 

Detections  

Model 

Frame 
Tagging  

DeepSORT 
Tracking 

 
Model 

Frame 
Tagging  

DeepSORT 
Tracking 

TP FN FP TP FN FP MC  TP FN FP TP FN FP MC 

CNN 

FRCNN 1 0 0 0 1 0 0  

CNN 

FRCNN 1 0 0 1 0 0 0 

SSD 1 0 0 0 1 0 0  SSD 1 0 0 1 0 0 0 

RFCN 1 0 0 0 1 0 0  RFCN 1 0 0 1 0 0 0 

BoVW 

SIFT 1 0 8 0 1 6 0  

BoVW 

SIFT 1 0 0 1 0 0 0 

SURF 1 0 3 0 1 2 0  SURF 1 0 0 1 0 0 0 

ORB 1 0 0 0 1 0 0  ORB 1 0 0 1 0 0 0 

Table 3: Video 1 detection results.    Table 4: Video 2 detection results. 

 

VIDEO 3 
Detections 

 
VIDEO 4 

Detections  

Model 

Frame 
Tagging  

DeepSORT 
Tracking 

 
Model 

Frame 
Tagging  

DeepSORT 
Tracking 

TP FN FP TP FN FP MC  TP FN FP TP FN FP MC 

CNN 

FRCNN 2 0 0 2 0 0 0  

CNN 

FRCNN 5 1 0 4 2 0 1 

SSD 2 0 0 2 0 0 0  SSD 4 2 0 2 4 0 3 

RFCN 2 0 0 2 0 0 1  RFCN 5 1 0 4 2 0 2 

BoVW 

SIFT 2 0 14 2 0 6 0  

BoVW 

SIFT 5 1 16 4 2 8 1 

SURF 2 0 9 2 0 3 0  SURF 5 1 9 3 3 5 1 

ORB 2 0 0 1 1 0 0  ORB 3 3 1 2 4 1 0 

Table 5: Video 3 detection results.    Table 6: Video 4 detection results. 

 

 

VIDEO 5 
Detections 

Model 
Frame 

Tagging  
DeepSORT 
Tracking 

TP FN FP TP FN FP MC 

CNN 

FRCNN 11 1 0 9 3 0 2 

SSD 6 6 0 4 8 0 2 

RFCN 12 0 0 6 6 0 4 

BoVW 

SIFT 8 4 3 7 5 1 2 

SURF 8 4 0 8 4 0 3 

ORB 2 10 0 1 11 0 0 

Table 7: Video 5 detection results.  

 

The BoVW models did not perform well, with multiple false positives, in the case of 

SIFT and SURF, and false negatives, in the case of ORB, in both frame tagging and 

object tracking. The false positives from the SIFT and SURF were mainly focused on 

some netting in the background reflecting light as it moved. Further refinement might 

have been able to address this and improve the precision of these models. 
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Table 8 
 
Overall precision and recall results for each model in Videos 1-5. For the purposes of overall 
precision, instances of multiple counts (MC) are considered false positives (FP). 
 

Tracking Algorithm 
CNN BoVW 

FRCNN SSD RFCN SIFT SURF ORB 

Frame 
Tagging 

Overall 
Precision 

100% 100% 100% 29% 45% 90% 

Overall 
Recall 

91% 66% 95% 77% 77% 41% 

DeepSORT 
Tracking 

Overall 
Precision 

84% 64% 65% 37% 50% 83% 

Overall 
Recall 

73% 41% 59% 64% 64% 23% 

 

Video 6 - Classifying sprats vs smolts 

 

All models were trained with two possible fish types to classify, smolts and sprats. In 

Videos 1-5 all instances of fish were smolts. The models all correctly identified the 

smolts in these videos save for the occasional frame. In Video 6, all instances of fish 

were sprats, which can be seen in Figure 12. 

  

 
 

Figure 12: Fish detections in Video 6 with only sprats present using the RFCN model. Detections 

classed as sprats are shown in blue boxes, whereas detections classed as smolts are highlighted in 

green. It can be seen that the number of fish present in the video makes accurate counting and 

tracking very difficult. 

 

Table 9 shows the number and percent of sprats correctly identified in Video 6. 

There were too many sprats in the short segment of video to correctly count the 

number present. However, due to the density of fish, it is assumed that there are no 

false positive identifications. The BoVW models all struggled with this task with low 

numbers of detections and at least two thirds of these mislabelled. The SSD model 

had a low detection rate but high precision in classification. The RFCN model 

performed the best scoring the second highest number of detections whilst also 
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achieving 98% classification precision, demonstrating that classification of types of 

fish under these conditions is feasible. 

Table 9 
 
The number of detections and sprat classification percent for each model in Video 6. 
 

 
CNN BoVW 

FRCNN SSD RFCN SIFT SURF ORB 

Number of 
Detections 

557 217 463 366 290 55 

Percent 
Identified as 

Sprats 
79% 95% 98% 32% 31% 15% 

 

In the preliminary studies, where the models were only trained on instances of 

smolts, the video segments with sprats generated many false positives as the model 

considered them too similar to smolts. By training on two types of fish, these false 

positives have now been converted into correct classifications. This result not only 

shows that the CNN models are capable of distinguishing between different types of 

fish based on example data alone, but demonstrates that for accurate detection 

models to work, prior knowledge of the types of fish expected to be present is 

required. That way, the model can be trained to distinguish between them and 

generate fewer false positives. 

 

Sea pen detection and counting 

 

Another common application of video data collection and inspection in aquatic 

environments involves identifying and counting species found in stretches of footage 

along reefs or seabeds to determine the levels of eco-diversity present and how that 

changes over time[51]. For this case, footage of phosphorescent sea pens (Pennatula 

phosphorea), shown in Figure 13, were used to determine how well the model 

pipelines performed in this different scenario.   

 

The sea pen video was collected by Marine Scotland Science in May 2015 on board 

the MRV Scotia. The video was recorded approximately 90 km due east of Kinnaird 

Head in the northern North Sea. A drop-frame TV camera system was towed behind 

the vessel at ~1 knot. A digital stills camera (Canon) was mounted on the drop-frame 

together with a high definition and standard definition video (Kongsberg Simrad). The 

drop-frame was suspended 1 m above the seabed, guided by a steel weight 

attached by a line to the drop-frame. Maintaining the steel weight (63.5 mm 

diameter) on or just above the seabed ensured the correct height for accurate 

focusing of the video and digital camera. Video was recorded continuously together 
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with digital photographs taken at one minute intervals for the duration of the transect. 

Two laser pointers set 68 mm apart provided a scale for identifying features. 

  
 

Figure 13: An example of the phosphorescent sea pen (Pennatula phosphorea) which was the 

subject of interest in this video. 

 

For training the sea pen detection algorithm, the supplied high-resolution images 

were used in conjunction with frames extracted from the first minute of test footage. 

In the case of the sea pen data, images and video were of much higher quality than 

the other cases. The images had 3648 x 2736 pixel resolution and the video was 

1920 x 1080 pixel resolution whereas the resolution of the videos used in fish 

detection were only 720 x 576 pixels. This meant that parts of the pipeline struggled 

to handle the large quantities of data.  

 

A single one minute video segment (that did not contain any training frames) was 

analysed to assess the performance of the various models in detecting sea pens, 

shown in Table 10. 

 

Table 10 
 
Video segment used for sea pen detection and counting model comparison. 

 

Video  
Length 

[mm:ss] 
Flora/Fauna 

# Objects 
(manually 
counted) 

Notes 
 

S 01:00 Sea pen 45 

Many sea pens on the seabed of 
varying sizes. Occasional dust 

clouds obscuring vision 
temporarily, otherwise generally 

clear. 

 

 

Detections 
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As in the previous videos, the detection pipeline outlined in Figure 8 was 

implemented to identify sea pens in this case example. However, unlike the static 

background of the fish trawls in Videos 1-6, the background in Video S was a moving 

sea floor. Therefore, the OpenCV KNN background subtraction was used instead. 

Unfortunately, as the video resolution was high and there were many moving 

objects, every frame contained multiple potential targets. This meant the BoVW 

models returned hundreds of false positives which did not improve with refined 

training and the CNNs were run on every frame. Additionally, due to the high-

resolution of each frame, the processing time was multiple times longer than the 

video length, even when running on a cloud server.  

 

 
 
Figure 14: Sea pen detections in Video S using the RFCN model. Detections from this CNN are 
shown as green boxes. The white boxes are from the DeepSORT tracking algorithm. The green 
number refers to the DeepSORT identification given to the tracked instance and does not necessarily 
reflect the count of instances.  
 

Table 11 
 
Video S detection results and metrics. The high-resolution images were unable to be processed by 
the SSD model in the current pipeline so results are not available for this model. Results and metrics 
for the BoVW models are not shown due to their overall poor performance in this task.   
 

VIDEO S 
Detections 

 
Processing 

Time [mm:ss] 

Model 
Frame Tagging   DeepSORT Tracking 

Laptop Cloud 
TP FN FP Precision Recall  TP FN FP MC Precision Recall 

CNN 

FRCNN 38 7 12 76% 84%  35 10 3 7 78% 78% 10:03 08:43 

SSD - - - - -  - - - - - - -  

RFCN 42 3 10 81% 93%  40 5 2 4 95% 89% 13:01 09:09 

 

Example frames from the detection process are shown in Figure 14 and the 

detection results and metrics are given in Table 11. Due to a memory limitation, the 

SSD model was unable to be trained on the large-scale images. Upon training 

completion, the remaining CNN models claimed 94% and 98% precision (FRCNN, 

and RFCN respectively) for recognising sea pens in the test images. This is most 

likely due to the distinguishing shape and colour of the animal against other debris 

on the seabed. The RFCN model maintained this level when analysing Video S with 

DeepSORT tracking, scoring 95% precision and 89% recall. However, the FRCNN 
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algorithm only achieved precision of 76% with a recall of 84% in frame tagging, and 

78% precision with 78% recall with DeepSORT. Unlike in the fish detection videos, in 

this case, the RFCN network outperformed the FRCNN network which demonstrates 

that no single model performs best in every task. 

 

Nephrops burrow detection 

 

Identifying Nephrops (Nephrops norvegicus) burrows is very challenging for the 

untrained observer. There are a number of criteria that distinguish them from other 

similar looking burrows in sandy seabeds[52]. Examples of these are shown in Figure 

15. As the identification of these burrows is complex, only a preliminary identification 

of entrances was attempted. This involved identifying all hole and hole-like debris in 

the video frames which would then be hypothetically post-processed to determine 

whether they pertain to a Nephrops burrow or not. Unfortunately, the full process of 

burrow detection is outside the scope of this case study. 

 

 
 
Figure 15: Left and middle: examples of Nephrops burrows highlighted by straight black lines. Right: 
a resin cast of a Nephrops burrow. Distinguishing features include a crescent shaped entrance holes, 
u-shaped complex, and entrances extending from the vertical apex in a linear fashion.  

 

Underwater video surveys are used as a fishery-independent method to assess the 

size of Nephrops stocks. The footage provided was obtained during these research 

vessel surveys by means of an underwater camera and lights, mounted on a sledge 

and towed along the seabed at approximately one knot. Counts of the burrows and 

information on the area covered on each tow are used to estimate the density of 

Nephrops on the ground. 
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Table 12 
 
Video segments used for Nephrops burrow detection model comparison. 

 

Video  
Length 

[mm:ss] 
Flora/Fauna 

# Objects 
(manually 
counted) 

Notes 
 

NB 02:53 
Nephrops 
Burrows 

Hundreds 

Attempting preliminary detection of 
holes in ground for hypothetical 

subsequent analysis for Nephrops 
burrows. Video frames are very 
blurry when camera is moving. 
Also, video contains too many 
holes for accurate counting.  

 

 

For training the Nephrops burrow detection algorithm, one frame each second was 

extracted for the first 150s of a sample video. The remaining footage in the video 

was analysed to assess the performance of the various models, shown in Table 12. 

In this case only one frame per second was analysed. 

 

Detections 

 

 
 

Figure 16: Potential Nephrops burrow detections in Video NB using the FRCNN model. Ideally the 
model should identify all hole-like objects in each frame for further post-processing. However, it is 
clear from these images that many of these have not been identified. 

 

Nephrops burrows require multiple steps for identification and to distinguish them 

from other burrows on the seabed. These include subtle shape differences of the 

entrance surrounded by characteristic claw marks in the sand and the connectivity 

between various burrow entrances to produce the structure shown in Figure 15. 

These factors are not easily translatable into features for performing object detection. 

Instead, further custom algorithmical analysis would have to be performed on 

potential entrances to determine whether or not the burrow. These steps involve, but 

are not limited to, determining the angle of the entrance based on the perceived 

angle from the camera, analysing which entrances may combine to create the 

particular burrow structure, and assessing whether there may be obscured entrances 
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or entrances facing away from the camera. However, these steps are not simple to 

program and fall outside the scope of the current case study. 

 

As Nephrops burrows are difficult to identify, the training frames were manually 

annotated with instances of holes or hole-like debris, representing potential 

entrances to the burrow as the first step of hypothetical detection. These were then 

put through the FRCNN pipeline. Unfortunately, recall never rose above 65% 

meaning there were many instances that were missed. The images in Figure 16 

show examples of the underperformance of the model. 

 

The main factors for the low precision and recall scores are the lack of prominent 

features of the hole structures combined with the blurred video from camera motion. 

In some cases, the holes are only visible from subtle shading in the sand which is 

difficult for the computer vision algorithm to recognise. The difficulty is further 

compounded by the camera motion blur inflicting shading on various other features 

of the seabed. 

 

Although unsuccessful, this case serves to highlight that, while the current computer 

vision technology is powerful, there are limitations as to what it can achieve on its 

own. There are many steps to identifying a Nephrops burrow, beginning with 

identifying possible entrance holes, and even that has been shown not to be a 

straightforward task to automate. From the results here, it is considered that this 

task, although not impossible, would require a much more specialised approach 

which is outside the scope of the current case study. 

 

Analysis of models from case study 

 

It is clear from the results that the CNN models outperform the BoVW models in 

terms of both speed and accuracy. With the CNN models, the high levels of precision 

and recall observed indicate that these are potential solutions for automating the 

analysis of videos from aquatic environments. However, selecting a single model for 

an application is not straightforward. Whilst the SSD model was the fastest tested 

here, which would be useful for analysing a large backlog of videos, it was not as 

robust as the slower FRCNN or RFCN models. The FRCNN model performed the 

best overall in the fish detection videos, but the RFCN model performed better with 

fish classification and detecting sea pens. For future development, training of various 

models would be beneficial to determine which performs best for the particular task 

in question. 
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It was intended to create pipelines that avoided as much manual input as possible in 

order to streamline the case study process. Therefore, in most cases, once enough 

data has been annotated the models can all be trained and applied with the 

execution of a single command. This also makes them approachable for further 

investigation by researchers without a strong background in the field of computer 

vision. 

 

However, there are a couple of places where manual intervention is required. For 

instance, in the BoVW models, training needed to be repeated multiple times to 

reduce the number of false positives. This requires extracting these instances from a 

set of results and adding them to the original data. Additionally, fine tuning the 

Background Subtraction to remove noise requires various image processing steps 

that were derived manually. These may need to be adjusted to suit different 

backgrounds. However, in the CNN models, the background subtraction step only 

serves to improve computation time as the model itself performs its own regional 

selection algorithms and may not be necessary if time is of no issue.  

 

In terms of the algorithms that constitute the pipelines, both the BoVW and CNN 

methods are reasonably modular lending themselves to be improved with other 

available methods if required. Currently, the CNN models are built around 

TensorFlow and only accept compatible models; however, similar training and 

execution pipelines in other frameworks exist that could be adopted in a similar 

fashion. Similarly, the feature detection algorithms for the BoVW models could be 

replaced by any algorithm that returns similar description vectors as the OpenCV 

implementations of SIFT, SURF, and ORB. For every other section, alternative 

algorithms are acceptable as long as the inputs and outputs are compatible with the 

pipeline stages that come before and after respectively.  

 

The footage tested in this case study was indicative of the various types of video 

encountered in aquatic research. However, certain practices in obtaining footage 

could aid in the process of automatically identifying aquatic life. Steady or still 

camera shots prevent motion blur of subjects and backgrounds which makes 

distinguishing features much simpler. Although high-definition footage also allows 

more features to be presented in each image, there is a trade-off for processing 

times as seen when comparing the computation time for a one minute 720 x 576 fish 

trawl video (1.5-2 minutes) and a one minute 1920 x 1080 sea pen video (8-9 

minutes). Furthermore, the scene should be well lit from artificial light to prevent 

colour loss, but with care to avoid harsh reflections off subjects of interest that can 

obscure features. 
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This case study has shown that these algorithms, specifically the CNN based 

algorithms, are fit for purpose in identifying aquatic fauna in underwater video. They 

are readily customisable for a variety of tasks and require a relatively low level of 

human intervention to initiate. Once the data pipeline has been produced, the level of 

input for customisation is relatively simple, only annotated data is required which can 

be produced by a user with little knowledge of the inner workings of the model. 

However, for consistently reliable, high-accuracy models, further specialist 

development may be required to ensure the statistical precision and recall of the 

models remain at appropriate levels across a wide variety of cases. Additionally, for 

individual tasks, multiple CNN models should be trialled initially to determine which is 

best suited for the job. 

 

Conclusion 

 

In this report, an overview of the current computer vision technologies were 

presented with their contributions to the field of object detection in aquatic video. A 

sample of the more promising technologies were taken forward for a case study to 

analyse video clips of data provided by Marine Scotland. This identified some which 

are viable for further development. 

 

Although much research has been performed in the field of computer vision, recent 

developments with convolutional neural networks have overshadowed many of the 

previously developed algorithms. This was also reflected in the case study, where 

the CNN algorithms outperformed the BoVW models by a large margin.  

 

Additionally, the open-source variants of the technology have proven to be effective 

even in the short developmental time frame available. This is promising for future 

development as fewer resources are required to initialise the process and more work 

can be performed in training and testing models. The working pipeline presented 

here, based on Google Object Detection API, could act as a platform upon which to 

build a working solution. There are other platforms, such as BIIGLE and VIAME, 

which are also trying to bring these computer vision technologies to aquatic 

scientists by abstracting out many of their complexities. However, they are currently 

still in the early stages of development, but could possibly provide a solution in the 

future. 

 

The case study methodologies and results described in this report demonstrate that 

the current available technology performs well in detecting aquatic fauna in 

underwater video which, in turn, will help improve the environment analysis 

capabilities of Marine Scotland. These methods could be applied to various video 
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material collected in, for instance, camera boxes connected to trawl nets; during 

monitoring at tidal turbines and at wind turbine bases; and at video based fish 

counters and in the video validation of fish counters using other technology. Although 

some instances, like the Nephrops burrows, would require additional development, 

salmon smolt and phosphorescent sea pen detection can be achieved using the 

methods presented here. 

 

Actionable recommendations 

 

From the outputs of this case study, a variety of actionable recommendations are 

proposed here for future research and development in this problem space: 

 

1. For detection of aquatic life in video, the convoluted neural networks far 

surpass the older algorithms in terms of both accuracy and ease of 

development.  

○ Transfer learning is sufficient in most cases. It is generally unnecessary 

to retrain the convolution/pooling stages, meaning many available open 

source options can be capitalized on.  

○ However, more complex objects that require more nuanced 

interpretation, such as the Nephrops burrows, will require further post-

processing or alternative approaches for automatic identification. 

 

2. Develop or document a database of images with annotations of aquatic life for 

training purposes. 

○ All models exhibited here rely on training data to properly initialise the 

feature detection steps.  

○ The video data supplied contained annotations of number of species 

identified with approximate timestamps which are insufficient for 

training these algorithms.  

○ Regardless of the final method chosen, having a database of training 

data already available will greatly facilitate future development.  

○ The recommended requirements are a database of images, each with 

corresponding [X, Y, width, height] annotations similar to Figure 5. 

These annotations should also denote the class of the object 

represented which should be unique to prevent confusion (e.g. genus 

and species). Although the actual annotation formats used by various 

training models may vary, they can usually be derived from this 

information. 
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3. It would be beneficial to develop a platform, or adopt an existing platform, for 

aquatic biologists to gain familiarity with the process of training and adopting 

these types of models.  

○ The complexities of model and parameter selection should be kept to a 

minimum in the platform to avoid unnecessary complexity to the 

process. 

○ This would allow researchers to attempt development of models by 

themselves with their own data without having to refer to an expert in 

the field of computer vision. 

○ There exist potential solutions based on other platforms such as 

BIIGLE, CoralNet, and VIAME that may address some areas of the 

problem space, although they would require additional development or 

expertise to achieve a complete end-to-end solution. 

 

4. Some of these computer vision models may outperform humans in some 

tasks and underperform in others. Therefore, a certain level of standardisation 

of the various elements involved, which might include benchmark tests and 

standard data libraries, will be required to compare the performance of 

different available processes.  

○ Additionally, a standardised representative level of accuracy should be 

presented with models to correctly interpret generated detections if the 

video is never going to be reassessed by humans.  

 

Considerations towards a complete end-user solution 

 

In addition to the recommendations above, the following is a list of possible platforms 

upon which to potentially build a complete solution for the automatic detection of 

aquatic life in underwater video. 

 

The Google Object Detection API platform is the method displayed during this case 

study. The others represent alternative platforms currently in varying stages of 

development. However, these other platforms will also require additional effort or 

development to be able to implement a full end-to-end solution similar to the 

approach presented in this case study. All these platforms are available in open 

source formats. 
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   Google Object Detection API (combined with DeepSORT tracking) 

Pros 

● Demonstrated here in the case study to be a powerful and versatile 

option for detecting and counting aquatic life. 

● Can be trained on almost any subject with enough training data. 

● Feature detection model can be chosen to suit the task at hand. 

Cons 

● Requires knowledge of Python scripting and familiarity with the 

TensorFlow library to implement. 

● On its own it is a bare-bones package aimed at computer vision 

researchers. It is not suitable for people unfamiliar with the training 

and implementing neural networks. 

Work 
Required 

● As with the working pipeline presented in this case study, the process 

for training and executing the networks can be extracted out into 

simple steps. 

● Additional work could be put in to create a user-friendly front end to 

simplify the process. 

 

   VIAME (Video and Image Analytics for a Marine Environment) 

Pros 

● Has lots of functionality in regards to computer vision technology, 

including the ability to track and count species in video. 

● It is aimed towards marine scientists and the problems they would 

encounter with visual data. 

● Allows for a modular approach to customise your own solution. 

Cons 

● Installation is not straight forward. Obtaining a version was not 

possible in the time frame of this project. 

● From the tutorial videos it contains, the interface looks very dense 

and not necessarily user-friendly for people unfamiliar with computer 

vision technologies.  

● It appears to only contain a single type of CNN to work with out of the 

box. It may be possible to include more through the modular 

framework but it is unclear. 

Work 
Required 

● Assistance from developers would be required to setup and configure 

the software. 

● This would involve training and instruction on how to use the various 

features that it contains. 

 

   CoralNet 

Pros 

● Contains a powerful CNN backend to assist in automatically detecting 

coral in images. 

● Can upload your images for processing to enable public sharing of 

data. 

Cons 
● Specialised for reefs and surface biological growths, not compatible 

with detection and tracking algorithms. 
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● Only works with images, so videos would have to be processed into 

frames manually before passing to this software. 

● The CNN model is hosted by the website meaning customisation of 

the approach is not possible. 

Work 
Required 

● This solution performs well in identifying types of surface biological 

growth in images. 

● For video processing, extraction of frames and subsequent analysis 

on the frame detections would be required to incorporate tracking and 

counting. 

● Alternatively, a custom interface to the website could be produced; 

however, there could be unforeseen integration problems with this 

approach. 

 

   BIIGLE 

Pros 

● An accessible web-based interface that has a simple workflow 

pattern (once data has been hosted in an online repository). 

● The machine learning suggestions that are returned are useful and 

generally accurate.  

● Has an established user base. 

Cons 

● The process is image focused (not video) meaning the ability to track 

and count objects is not present. 

● Only works with images, so videos would have to be processed into 

frames manually before passing to this software. 

● Requires users to host images themselves (no option to directly 

upload to the software without additional permissions), which 

presents a barrier to entry if researchers are not familiar with the 

process. 

Work 
Required 

● This solution is functional and approachable for the task it performs, 

which is identifying subjects in images. 

● Manual pre-processing of video and subsequent analysis on the 

frame detections would be required to enable video processing. 

● Alternatively, a custom interface to the website could be produced; 

however, there could be unforeseen integration problems with this 

approach. 

   FishTick 

Pros 
● Used widely for fish counting in North America. 

● Interface is simple and straight-forward to set up. 

Cons 

● Current version only contains frame-tagging capabilities. Manual 

classification and counting still need to be performed. 

● Currently requires simple stationary backgrounds (i.e. fish ladders). 
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Work 
Required 

● A new version that aims/claims to include automated classification 

and counting is in the beta stages of development. However, the 

release date for this is unknown. 
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