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1 Executive Summary 
 
The EU Landings Obligation has focussed attention on the urgent need to develop 
effective strategies for reducing the catch of unwanted species or sizes of fish.  Real-
time reporting is the term used for the rapid collation, analysis and dissemination of 
bycatch data so as to enable skippers to improve the match between catch 
composition and available quota.  Informed by experience with bycatch reduction in 
US fisheries, this report (FISA 01/15) considers how real-time reporting could be 
used in Scotland and outlines a workplan for developing this capacity. 
 
In Scotland, there are several sources of data that are useful for real-time reporting.  
E-logbook information is currently available in near real-time to individual producer 
organisations and used for internal reporting purposes.  Ongoing improvements to 
software will soon make these real-time data more accessible to industry.  Bycatch 
information is also collected by the observer programmes coordinated by the 
Scottish Fishermen’s Federation and Marine Scotland Science.  Fisheries-
independent data are available from surveys conducted twice a year. 
 
Using juvenile cod in the North Sea as an example of unwanted bycatch, observer 
data were merged with survey data in a scientifically robust statistical framework to 
develop maps of juvenile cod distribution by month which have the potential for 
mapping densities of unwanted bycatch with high spatial and temporal resolution.  A 
Bayesian modelling approach was used such that the model could be continually 
updated in time as new information became available. 
 
The use of real-time reporting in Alaskan and Pacific Northwest demersal fisheries to 
meet regulatory limits on bycatch of salmon was reviewed.  Data about the location 
and magnitude of salmon bycatch are shared in real-time across fishing vessels 
belonging to the same fishing cooperative.  High bycatch triggers e-mail alerts which 
are sent to skippers who then use the information for tactical decision making.  The 
information is also used by cooperative managers to establish area closures, termed 
rolling hotspots, and monitor effectiveness of these closures. 
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Consultations with Scottish industry revealed general agreement about the utility of 
real-time reporting for bycatch reduction but reservations about the likelihood of 
getting skippers to share information.  It was also apparent that some skippers are 
already sharing information across a small network of peers via social media.  
Developing incentives for sharing information about bycatch within a trusted network 
of skippers, for example those belonging to the same producer organisation, is 
critically important. 
 
Real-time reporting utilises existing data resources and available computer and 
information technology to enhance spatial selectivity.  Recommendations are made 
regarding the further development of statistical models and real-time reporting 
systems.  The need for institutional and attitudinal change is highlighted. 
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2 List of Acronyms 
 
Acronym Definition 
AFA American Fisheries Act 
BSAI Bering Sea and Aleutian Islands 
CCCS Cod Conservation Credit Scheme 
DATRAS ICES Database of Trawl Surveys 
EBS Eastern Bering Sea 
EM Electronic Monitoring 
EMFF European Marine and Fisheries Fund 
FIS Fisheries Innovation Scotland 
FISA Fishing Industry Science Alliance 
FMP Fisheries Management Plan 
GAM Generalized Additive Models 
GIS Geographic Information System 
GMRF Gaussian Markov Random Field 
GRF Gaussian Random Field 
HSCC High Seas Catchers’ Cooperative 
IBTS ICES International Bottom Trawl Survey 
ICA Intercooperative Agreement 
ICES International Council for the Exploration of the Sea 
ICT Information and Communication Technology 
INLA Integrated Nested Laplace Approximation 
IPA Incentive Plan Agreement 
ITQ Individual Transferable Quota 
LO Landings Obligation 
MCMC Markov Chain Monte Carlo 
MCRS Minimum Conservation Reference Size 
MSS Marine Scotland Science 
NMFS National Marine Fisheries Service 
NPFMC North Pacific Fisheries Management Council 
PCC Pollock Conservation Cooperative 
PO Producer Organisation 
PSC Prohibited Species Catch 
RHS Rolling Hotspot 
RTC Real Time Closures 
SFF Scottish Fishermen’s Federation 
SIDI Scottish Industry Discards Initiative 
SSAP Salmon Saving Area Plan 
VMS Vessel Monitoring Scheme 
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3 Background 
 
Unwanted bycatch and discards have been serious concerns globally, posing a 
threat to the sustainability of fisheries through economic, biological and ecological 
losses.  There are two general approaches to avoiding unwanted catches: enhanced 
spatial selectivity (for example ‘moving on’ rules), and enhanced gear selectivity.  
Spatial selectivity, or avoidance, determines where and when vessels fish, whereas 
gear selectivity determines how vessels catch fish.  Spatial avoidance measures 
have been used throughout the world to mitigate for bycatch and discarding (Little et 
al. 2014).  Spatial avoidance is particularly well-developed in the west coast of North 
America where it has been employed successfully in demersal fisheries of the Bering 
Sea (Madsen and Haflinger 2015) and the Pacific Northwest (Sylvia et al. 2014).  In 
several eastern Bering Sea (EBS) fisheries, bycatch data are shared in real-time 
such that “hotspots”, defined by their high bycatch rates, can be identified quickly 
and the information disseminated rapidly to the fishing fleet.  In this way, individual 
vessels have the option of selectively avoiding these areas.  This implementation of 
spatial selectivity is a cost-effective way to facilitate bycatch reduction but requires 
high levels of fleet participation (Gauvin et al. 1996; O'Keefe et al. 2010; Bethoney et 
al. 2013).  Furthermore, bycatch species should be unevenly distributed in space to 
be able to identify hotspots, a condition that is met in the EBS by species as halibut 
and red king crab but not by Chinook salmon. 
 
In the context of Scottish fisheries, spatial avoidance of choke species through real-
time reporting of catch rates is a potential discard mitigation method.  There are 
several relevant sources of geo-referenced data that are useful for tracking the catch 
of choke species.  In Scotland, e-logbook information is held by Marine Scotland.  It 
is available to individual producer organisations (PO) for reporting purposes and has 
a high degree of temporal resolution about catch rates of choke species.  Spatial 
resolution of these data is limited to the International Council for the Exploration of 
the Sea (ICES) statistical rectangle (gridded by latitudinal rows with intervals of 30', 
and longitudinal columns with intervals of 1°).  More highly resolved data on the 
location of these hauls is available from Vessel Monitoring System (VMS) data.  
When combined, these two fisheries-dependent data streams could give levels of 
spatio-temporal resolution that are comparable to those being used for hotspot 
mapping in the EBS fisheries.  Relevant information includes the data collected by 
the observer programme coordinated by the Scottish Fishermen’s Federation (SFF), 
and the corresponding Marine Scotland Science (MSS) observer programmes on-
board the demersal fleet.  The MSS and SFF observer programmes cover Scottish 
demersal and Nephrops vessels, and the majority of vessels grant access to 
observers where possible.  For both programmes the number of observer trips 
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undertaken in 2014 and 2015 is given in Table 1.1.  The MSS observer data also has 
high definition data on vessel position, activity and, in some cases, footage from the 
closed circuit TV (CCTV) programme.  In addition, fisheries-independent data are 
available from the International Bottom Trawl Surveys (IBTS) conducted twice a year 
and collated by ICES. 
 
Table 1.1: The number of trips in the MSS and SFF observer programmes.  The 
bracketed values indicate the percentage of all fishing trips covered by the observer 
programmes. 
 
Year Number of MSS Observer Trips Number of SFF Observer Trips 
2014 71 (0.27%) 144 (0.56%) 
2015 80 (0.33%) 135 (0.56%) 

 
The high degree of spatio-temporal resolution inherent in these different data 
streams has the potential to improve spatial selectivity of North Sea demersal stocks, 
including implementation of avoidance measures for unwanted species and size 
classes.  However, the difficulty with combining different data types (fisheries-
dependent and -independent) lies in accounting for intrinsic differences in sampling 
methodology, including units of measurement, gear type, availability, catchability, 
and sampling strategy (i.e., distribution of hauls in space and time). 
 
This Fishing Industry Science Alliance (FISA) project was conceived originally as a 
spatio-temporal fish distribution model that utilised novel statistical approaches to 
combining fisheries-dependent and –independent data.  A Bayesian approach was 
taken such that the model could be continually updated in time as new information 
became available.  In the course of developing a computationally intensive statistical 
model it became obvious that a practical means of delivering real-time data to the 
model was required.  This led directly to discussions with the individuals doing the 
data compilation, analysis and dissemination in the US (Sea State Inc., Seattle, WA).  
From the real-world perspective of discard mitigation, the model only becomes useful 
when effective real-time reporting exists.  This is not presently the case in Scottish 
fisheries. 
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In the European context the Scottish fishing industry were early adopters of spatial 
selectivity in the form of real-time closures as part of the Cod Conservation Credit 
Scheme (CCCS; Holmes et al. 2011).  This experience with spatial selectivity is 
relevant to real-time reporting and spatial selectivity.  The experience of the CCCS 
showed that a component of the demersal fleet was both adaptive and innovative.  
The forthcoming Brexit could provide an opportunity to consider custom-built 
solutions including real-time reporting and enhanced spatial selectivity. 
 
3.1 Project Aims 
 
The first aim of this project (FISA 01/15) was to merge commercial and scientific 
data sources in a scientifically robust analytical framework.  This modelling exercise 
constitutes a prototype model which is a first-step towards the medium-term goal of 
creating highly-resolved spatio-temporal maps having predictive capability for 
unwanted catch including juveniles and choke species.  If a protocol for sharing 
information about catch of unwanted species or size classes in real-time became 
available, then it would be possible to disseminate updated maps of real-time 
distribution such that fishers can access them remotely.  Therefore, the second aim 
of FISA 01/15 was to review the experience with real-time reporting in the Alaskan 
and Pacific Northwest groundfish fisheries where hotspot mapping tools have 
become essential components of bycatch reduction and fisheries management. 
 
To meet this second aim Aberdeen staff (Tara Marshall, Thomas Cornulier) went to 
Seattle in December 2015 to discuss the real-time reporting of bycatch with Karl 
Haflinger of Sea State Inc.  Sea State Inc is the “third party” agent contracted by the 
industry to monitor and report on the salmon bycatch as well as establish area 
closures (referred to as rolling hotspots) and monitor their effectiveness.  The 
meeting participants also included Steve Martell (then of the International Pacific 
Halibut Commission, currently of Sea State Inc) and Edward Richardson (At-Sea 
Processors Association, morning only).  Discussions focussed primarily on the 
experience with EBS Pollock fishery.  Key similarities and differences between this 
fishery and the Scottish demersal fishery (see Section 5.6). 
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3.2 Project Deliverables 
 
1. Static maps of desired variables, e.g., expected catch under Minimum 
Conservation Reference Size (MCRS) for species identified as priorities by the 
industry. 
 
2. A model, coded in the statistical programming language R, for a functional spatio-
temporal distribution model for a key commercial species over a range of years 
having observer data from both industry and MSS (see Appendix 1). 
 
3. A final report including: 
3a)  a description of the spatio-temporal distribution model as well as an evaluation 

of its performance characteristics (see Section 2); 
3b)  a summary of international experience implementing spatio-temporal 

distribution models in management of a Pacific groundfish fishery (see Section 
3); 

3c)  a summary of consultation with industry regarding practical aspects of 
collecting relevant data and disseminating spatio-temporal distribution models 
(see Section 4). 

 
The final report also has a summary of recommendations (Section 5) based on work 
undertaken to meet all three of the deliverables. 

4 Bayesian Spatio-Temporal Modelling of Juvenile Cod 
 
4.1 Introduction 
 
Spatio-temporal models are used to explicitly represent species distribution in space 
and time.  Models considering space and environmental covariates have been 
applied to investigate the outbreaks of disease in a localised area over time 
(Blangiardo & Cameletti 2015), model patchy distributions of demersal species (San 
Martin et al., 2014) and determine hotspots of small sharks (Jaureguizar et al. 2016).  
In fisheries science, a popular methodology for modelling spatial distribution of 
species density is geostatistics, which often uses observations from fisheries-
independent surveys.  Geostatistics is a powerful technique for inference and 
prediction because takes into account the structural spatial correlation in the 
variance of the observed variable (Rivoirard et al. 2000).  However, the use of 
geostatistics only provides estimates of spatial predictions at a single point in time 
(snapshot) without incorporating the underlying temporal dynamics of the population.  
The time dimension can be incorporated by ordering spatial predictions at different 
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points in time.  The complexity of simultaneously modelling both space and time is 
related to two main issues.  Firstly, space need to be explicitly connected in time 
using statistical models that include both spatial and temporal autocorrelation.  
Secondly, fisheries data usually involves intensive sampling over large areas either 
pseudo-randomly (research surveys) or non-randomly (fishing vessels).  Depending 
on the degree of resolution, modelling space and time at once becomes extremely 
computational intensive (Blangiardo & Cameletti 2015). 
 
Spatio-temporal models have been useful in predicting distributions of species that 
are clustered in space and time and vary significantly from year-to-year, as is the 
case of unwanted species in the catch composition (Cosandey-Godin et al. 2015).  
Unwanted species or size classes are often referred to as bycatch.  Bycatch can 
either be retained and landed but is often discarded at sea for legal or economic 
reasons (Catchpole et al. 2005).  Fisheries bycatch are a serious conservation 
concern globally and regulation and requirement to reduce bycatch are included in 
the management regulation of a growing number of nations (Little et al. 2015).  
Landing obligations are currently being implemented in regional seas in the 
European Union.  By 2019, they will cover all species for which there is a quota and 
discarding of such quota species will be restricted (European Commission 2015, 
Scottish Government 2012).  In contrast to past fishing practices, fish below the 
MCRS will have to be landed but cannot be sold for human consumption.  Therefore, 
there is an interest for fishermen and managers to develop effective bycatch 
mitigation strategies to decrease the probability of catching unwanted species or size 
classes.  In addition to changes in fishing gear regulations, time/area closures have 
been employed to reduce discarding in the EU (Bailey et al. 2010, Little et al. 2015).  
However, closing areas does not always result in bycatch reduction, because of the 
poor match between the closed area and the spatio-temporal distribution of the 
species that is the object of protection (Bailey et al. 2010). 
 
Bycatch is usually clustered in space and time and also varies significantly from 
year-to-year (Cosandey-Godin et al. 2015, Jaureguizar et al. 2016).  When non-
target species vary at predictable space-time intervals (e.g., during spawning 
migrations), time-area fishery closures can greatly facilitate fisheries’ compliance 
with bycatch regulations (Stram and Ianelli 2015, Madsen and Haflinger 2015).  
Establishing closed areas requires highly resolved descriptions of the spatio-
temporal dynamics of bycatch such as can be collected by scientific observers 
onboard commercial operations (Wiff et al. 2016).  Fishery-dependent data 
potentially provide an intensive spatio-temporal sampling of fish distribution, 
compared to fisheries-independent surveys that are restricted in temporal coverage.  
However, fisheries-dependent data are associated with challenging statistical 
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features including a high proportion of zero observations and non-random sampling 
which generates both spatial and temporal correlation (Ciannelli et al. 2008, 
Cosandey-Godin et al. 2015).  In addition, fishery-dependent data are influenced by 
uncontrolled factors including fishing gear configuration, quota availability, trip 
duration, target intention, environmental variables and market conditions (Pelletier & 
Ferraris, 2000; Wiff et al. 2008).  Data obtained from fisheries-independent research 
surveys have several advantages over fisheries-dependent data, because sampling 
location is determined independently of local abundance.  This results in unbiased 
population estimates (Roa & Niklitschek 2007).  Consequently, fisheries-independent 
data is more appropriate for developing a mechanistic model for describing spatio-
temporal dynamics of bycatch (e.g., Kristensen et al. 2015). 
 
These stark differences in statistical properties of data originating from commercial 
fisheries and research surveys pose a challenge to developing density estimators 
through the merging of these two data sources.  Integrated stock assessment 
combines the two data types via different likelihood functions.  Catch rates from 
commercial data are usually influenced by several factors, and the influence of these 
factors are isolated using a process known as effort standardisation.  Following the 
same data merging principles underpinning effort standardisation (CPUE), bycatch 
observations from survey data can be treated as a particular fleet in which fishing 
operations occurs in certain areas in particular seasons with homogeneous fishing 
gear.  Thus, commercial and survey data can be combined in a similar manner to 
combining data from different fleet types having different gears and fishing 
operations and therefore variable effort. 
 
From a statistical viewpoint, generalized additive models (GAMs) are often used to 
model bycatch (e.g. Ortiz & Arocha 2004) because they incorporate different 
explanatory variables with flexibility about assumption about the error distribution.  
GAMs allow a straightforward implementation of the spatio-temporal component by 
including bi-variate smooth functions for two geographical coordinates (longitude and 
latitude) and time being treated as fixed factor (e.g., San Martin et al. 2013, 
Jaureguizar et al. 2016).  One of the disadvantages of using GAMs to model the 
spatial component is that the geometry of the domain is difficult to include in the 
analysis (Kristensen et al. 2015).  GAMs usually include latitude and longitude 
coordinates, incorporated as fixed effects, and thus do not explicitly include the 
spatial correlation structure (Cosandey-Godin et al. 2015).  In contrast, in classical 
geostatistics the geometry of the spatial dimension is intrinsically incorporated using 
a variogram function, accounting for spatial correlation among neighbouring data 
points. 
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An alternative of the models presented above are the mixed effect models, in which 
space and covariates can be combined in a sum of fixed and stochastic effects.  The 
most widely used is known as Gaussian Random Field (GRF).  This random field is a 
stochastic process that essentially represents all spatially explicit processes that may 
have an effect on bycatch attributes (Cosandey-Godin et al. 2015).  GRF has 
advantages over GAMs or classic geostatistics because GRF conceives the spatial 
correlation as a stochastic process and allows representation of observations and 
unobserved (latent) variables, permitting us to account for all uncertainty in with the 
entire bycatch phenomena. In addition, GRF is based on structured correlation 
among neighbouring data points which allow to model fine scale processes in 
comparison with the relatively large spatial resolution achieved using splines via 
GAM. 
 
GRF for spatio-temporal analyses is usually implemented using hierarchical 
Bayesian models in which the posterior distribution is approximated using Markov 
Chain Monte Carlo (MCMC) which is computationally intensive (Gilks et al. 1996).  
However, a new statistical approach is now ready available, namely Integrated 
Nested Laplace Approximation (INLA) via the R-INLA package (hppt://www.r-
inla.org).  INLA is a powerful methodology which approximates via inference the 
posterior distribution in Bayesian analysis, thus avoiding the computational demand, 
convergence and mixing problems associated with MCMC analysis (Rue et al. 2009) 
 
Advances in modelling fine spatio-temporal correlation using GRF and covariates 
provides a powerful framework for modelling bycatch.  The aim of this paper is to 
model the spatio-temporal dynamic of juvenile cod (Gadus morhua, where juveniles 
are defined as <35 cm) in the North Sea using Bayesian hierarchical models with R-
INLA.  This study develops a modelling framework addressing two highly current 
topics in fisheries management in the era of the landings obligations: the 
development of models aimed for real-time spatial management and how non-
standard sources of fishery data can be coupled with scientific survey data for 
generating inferences in a spatio-temporal context.  The proposed model provides 
inference for the spatio-temporal dynamics of juvenile cod combining both survey 
and commercial fishing data while accounting for different gear types.  Results have 
the potential to improve real-time spatial management by mapping fine spatio-
temporal scales dynamics of undersized cod likely to contribute to bycatch problems. 
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4.2 Materials and Methods 
 
4.2.1 Survey Data 
 
The North Sea International Bottom Trawl-survey (NS-IBTS) is an international 
demersal trawl-survey conducted in quarter 1 and quarter 3 of each year.  NS-IBTS 
are multispecies surveys with standardised data sampling and processing design 
and provide data for estimation of relative abundances for groundfish species in an 
area within 51 N to 62 N latitude and 4 W and 9 E longitude and depths shallower 
than 300 m (ICES 2012).  Haul duration was standardised to 0.5 hours.  In this 
article we used data from 2011 to 2015 downloaded from ICES (DATRAS: 
http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx).  Survey hauls 
with null observations of juvenile cod, were treated as true zeros in the model.  The 
database used comprised 1110 hauls between 2011 and 2015.  Each haul has 
information regarding geographical position, date, and number caught per length 
class measured to the nearest centimetre. 
 
4.2.2 Commercial Fishing Data 
 
The commercial fishing data used here were collected as part of discard monitoring 
programs conducted by Marine Scotland Science (MSS) since 1978 and Scottish 
Fishermen’s Federation (SFF), who started sampling commercial catches more 
recently.  Both programs used a common sampling protocol conducted by on-board 
scientific observers.  Under the European Union Data Collection Framework (EC 
Regulation 199/2008), EU member states are compelled to collect such data, to 
supply information on discards for stock assessment purposes.  Discard data was 
acquired from staff at the Marine Lab of Marine Scotland Science (Scottish Fisheries 
Management Database (FMD) operated by Marine Scotland (www.scotland.gov.uk)).  
The selection of vessels to place observers on follows a randomization process, but 
skippers can decline having observers on-board, resulting in a quasi-random 
sampling of the fleet.  Samples are taken from the hauls, and the number of fish is 
raised to haul-level by multiplying the ratio of the discards in the sample with the total 
weight of the catch in that haul.  In addition to numbers caught by length-class, 
species and haul, environmental data and information of the gear type is recorded.  
Only the discarded portion of the catch is georeferenced to haul level (and the total 
weight of the catch, however the species composition of the catch-weight is 
unknown).  It is therefore more challenging to model the entire length-span of a 
species using this dataset, as it will require additional assumptions and estimations 
to determine where the fish above legal landing-size were caught, as landings data 
(i.e. only the landed component of the catch) is only georeferenced by trip or once 
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per day, and not on a haul level.  The discard observer Program covers the waters 
west of Scotland (ICES division VIa) as well.  However, to match the coverage of 
survey- and observer data spatially, only observer data for the North Sea were used.  
In total, this added up to 2759 hauls between 2011 and 2015, from multiple trawling 
fishing fleets targeting different species using nine different fishing gears. 
 
4.2.3 Statistical Model 
 
For clarity, the following description of the statistical model is divided into three sub-
sections: (1) general model, (2) exploratory analysis and (3) the structured spatio-
temporal model.  Subsection 2.2.3.1 describes the general statistical modelling of the 
count data using Markov Gaussian Random Field (GMRF) with Bayesian inference.  
Sub-section 2.2.3.2 describes the analysis underpinning the selection of variables to 
be included in the general model.  We also described computation issues in 
modelling all variables directly in the general model and how we pre-computed some 
variables in order to make computation tractable.  The last sub-section (2.2.3.3) 
describes the structured spatio-temporal analysis using an intrinsic autoregressive 
model (also known as “Besag” model) with a regressive temporal structure. 
 
4.2.3.1 General Model 
 
Let us assume that our region of interest is divided into n non-overlapping areas.  
Further, let  ݕ denote the number of juvenile cod (< 35 cm) in the region i distributed 
such that: 

 ሿ	ߣሾ݊ݏݏ݅ܲ~ݕ
 
where i is a parameter defining the expected rate of cod per exposure time (i.e., 
trawling time) in the region i such as   λ: ൌ 	ሻ	ܠ|ݕሺܧ .  We assumed the existence of 

a n-dimensional Gaussian field  ܠ ൌ ሼݔ	: ݅ ∈ Գሽ	  to be point-wise observed through 
݊ௗ conditional independent data ܡ.  The covariance matrix, the Gaussian field ܠ and 
the likelihood model for ݕ|ܠ are all controlled by some unknown hyperparameter θ.  
In this case, and according to (Martino and Rue 2010), the posterior reads: 
 

,ܠሺߨ θ|ܡሻ ∝ ,	ݔ|ݕሺߨ∏	θሻ|ܠሺߨ	ሺθሻߨ θሻ.                       (1) 
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A latent Gaussian model can be expressed as an additive regression model (Martino 
and Rue 2010).  Our interest here is modelling the number of juvenile cod per 
trawling time ݐ, such  ܧሺݕ|ܠ	ሻ/ݐ.  The structured, additive predictor log	ሺܧሺݕ|ܠ	ሻሻ 
accounts for the effects of various covariates in an additive manner. 
 

ሻሿ	ܠ|ݕሺܧሾ݈݃ ൌ logሺݐሻ 	ߚ  ∑ ݂ሺఊሻሺܿఊሻ

ఊୀଵ  ∑ ఈݖఈߚ  ߝ

ഁ
ఈୀଵ      (2) 

 
Here, the ሼߚఈሽ’s represent the linear effect of covariates z.  The ൛݂ሺఊሻሺ∙ሻൟs are the 
unknown functions of the covariates c.  ߚ is an intercept, logሺݐሻ represents an offset 
of the exposure time (trawling time) and ߝ is an error term.  Hence, the vector of 
latent effect is ܠ ൌ ൛ሼ݈݃ሾܧሺݕ|ܠ	ሻሿሽ, ,ߚ ሼߚఈሽ, … ൟ.  The distribution of observations ݕ 
will depend on the latent effect x and a number of hyperparameters θ because x is 
a GMRF (Bivand et al 2015). 
 
൛݂ሺఊሻሺ∙ሻൟ can take many forms.  Here, we are interested in modelling the spatio-
temporal dependence and group-specific, random effect for vessels.  The spatial 
domain included the North Sea from 48° to 61° N.  This observation window was 
discretised into n=2850 grid cells corresponding to an ICES grid cell 1/16th of 
latitudinal degree.  This model was implemented using R-INLA package 
(http://www.r-inla.org). 
 
4.2.3.2 Exploratory Analysis 
 
We assumed that spatio-temporal variation in juvenile cod is broadly affected by a 
combination of average and seasonal predictable structures at large spatial scales 
and unpredictable short-term structures at a range of spatial and temporal scales 
(summarized in Table 2.1).  “Seasonal effects” were defined as those spatial 
patterns which vary across months but in a repeatable way across years.  Two 
important components of predictable seasonal effects were: 1) the systematic 
monthly variation in juvenile cod relative abundance explained by depth, here termed 
the “depth effect”; and 2) a pure spatial effect that was repeatable across years but 
not explained by depth, here termed “seasonal spatio-temporal” effect.  
Unpredictable variation of fish abundance around the predicted seasonal average 
spatial distribution was partitioned into three components: 1) a fixed year effect 
accounting for year-to-year stock fluctuations; 2) a fixed month effect shared across 
years; and 3) a pure spatio-temporal random field for each month by year 
combination (or “layer”), termed the “spatio-temporal” effect.  This third component is 
conceptually the most important effect because it captures the small-scale structure 
in the month-specific spatial distribution of fish that we specifically aim to model and 
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predict, as well as the temporal dependence between two successive layers (year-
months).  Fishing gear was treated as a fixed effect. In combination with the offset in 
the linear predictor, the gear-specific intercept acts as an estimated scaling constant 
for the gear-specific relative efficiency per unit of effort.  Variations across vessels 
were treated as a random effect consistent with what is done routinely when 
standardising for differences fishing effort (exposure time) by estimating catch per 
unit time (Wiff et al 2008).  We refer to spatial layer as the realisation of the spatial 
process (i.e., map of count of juvenile cod) at one particular point in time.  The final 
model proposed here is composed of 60 spatial layers, each one representing a 
month across the five years of analysis. 
 
Table 2.1: Effects included in the final model. 
 
 Definition Description 
 linear effects  
z=1 Seasonal pre-computed seasonal effect 
z=2 Depth pre-computed depth effect 
z=3 Month fixed effect of months 
z=4 Year fixed effect of years 
z=5 fishing gear each of nine fishing gears as fixed factors 
 non-linear effects  
c=1 spatio-temporal structured spatial and year-month effect 

(Markov Random Field + AR1 temporal 
structure) 

c=2 Vessel unstructured random effect 
 
In an ideal situation, seasonal and depth effects should have been treated as 
structured non-linear effect in Eqn (2).  Early attempts to fit this type of model to the 
data were unsuccessful because of the large number of the structured spatial layers 
that needed to be estimated which exceeded the limits of the available processing 
power (a computer with 3.5 GHz Intel Core and 16  GiB RAM was used).  It seems 
reasonable to assume that the smaller-scale fish aggregations observed at sea are 
ephemeral structures and less likely to be repeatable across years, unless they are 
correlated with covariates such as depth.  Assuming that seasonal spatial effects 
should typically be relatively large-scale processes and to make computation more 
tractable, we pre-computed spatial seasonal and depth effects from the whole set of 
data with spatial smoothing splines using GAMs.  The intention here is to model 
seasonal and depth spatial features effectively but in a smaller dimension (at 
relatively broad spatial scales) using splines which are very computationally 
effective.  Then, marginals (term used for the relative contribution of each effect) for 
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seasonal and depth were taken from GAMs prediction and treated as fixed effect in 
model of Eqn (2).  Thus, the linear effects for season (ݖఈଵ) and depth (ݖఈଶ) in Table 
2.1 were pre-computed using the following GAM: 
 
ሻሿ	ܠ|ݕሺܧሾ݈݃ ൌ ݃ሺߤሻ ൌ ߚ

ீ  	log	ሺߚ
ீ ሻ  ሻܦሺ݅ݐ  ሻܦ,ሺ݉݅ݐ  ,ݔሺ݁ݐ ሻ݉,ݕ …     (3)                              

	݁ݐሺݔ, ,ݕ ݕܾ ൌ ݉ሻ  ,ݔሺ݁ݐ ሻݕ  ݎܻܽ݁   ݎܽ݁ܩ
 
where ߚீ	is the intercept and ߚீ  is log of trawling time treated as an offset. ti and te 
represent a tensor product smooth interactions and tensor product smooths applied 
over variables depth (D), month (m), longitude (x), latitude (y). ti(D) assumed a thin 
plate regression spline (tp). ti(m) assumed a cyclic cubic regression spline (cc).  
ti(m,D) used a cc and tp splines for months and depth, respectively. te(x,y,m) uses a 
thin plate spline with smoothing penalty (ts). te(x,y) and te(x,y,by=m) represent the 
random effect of the spatial component globally and by spatial month layers, 
respectively. 
 
4.2.3.3 Structural Spatio-Temporal Analysis 
 
The structural spatial correlation ܿఊଵ ൌ ࢉ ൌ 	 ሼܿଵ, …	, ܿሽ			was modelled using an 
intrinsic conditional autoregressive model, also known as the Besag model (Besag 
1974).  This model assumed that ICES grid cells that are adjacent in space show 
more similar number of undersized cod than areas that are not neighbours.  A 
common assumption is to regard grid cells i and j as neighbours if they share a 
common border, denoted here as i ~ j.  We denote the set of neighbours of region i 
and ߜ with size ݊ఋ.  The conditional distribution for ܿ is: 
 

ܿ|ିࢉ, ߬~ܰቌ
1
݊ఋ

 ܿ

∈ఋ

,
1

݊ఋ߬
ቍ 

 
where ߬ is a precision parameter and ିࢉ ൌ ሺܿଵ, …	, ܿିଵ, ܿାଵ, …	, ܿሻ.  The joint 
distribution for c is: 

ሻ߬|ࢉሺߨ ∝ ቌെݔ݁
߬
2
൫ܿ െ ܿ൯

ଶ

~

ቍ 	∝ 	 ቀെ
߬
2
 ቁ܋ܛۿ܋
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where ࡽ௦ is the precision matrix of the spatial structured effect with entries: 
 

ܳ,ୀ ൝
݊ఋ											ୀ,
െ1							݅~݆,
.݁ݏ݈݁								0

 

 
The spatio-temporal interaction ܿఊሺݏ,  ሻ can be described as the product betweenݐ
purely spatial (ܿఊሺݏሻ) and temporal basis function (ܿఊሺݐሻ ൌ ܿ௧), here defined as first 
order autocorrelation process (AR(1)) between consecutive year-month layers: 
 

ܿ௧ ൌ 	∅ܿ௧ିଵ   ௧ݒ
 
where observations are independent in time but spatially correlated: 
 

௦ࡽ,௧~ܰሺ0ݒ
ିଵሻ 

 
The spatio-temporal interaction was modelled as a Kronecker product (Blangiardo & 
Cameletti 2015) of a structured GMRF and first order autocorrelation in time, AR(1).   
The Kronecker product, here denoted by ⨂ , is an operation on two matrices 
representing the space and time into a partitioned matrix that has being broken into 
sections each one representing a point in time across all the space. 
 
In this case, the precision matrix of the spatio-temporal interaction(Q) can be written 
as the Kronecker product between the precision of the temporal (்ࡽ) and spatial (ࡽ௦) 
precision matrices as ࡽ ൌ	࢙ࡽ⨂ࢀࡽ		(Blangiardo & Cameletti 2015).  Here, ்ࡽ is a tri-
diagonal T-by-T matrix.  The use of the Kronecker product allows the construction of 
a block matrix broken into space and time units.  This is based on the assumption 
that each one of the s ICES grid cells (ݏ	ሻ,	has an autoregressive structure on the 
time component t, which is independent of the ones in the other grid cells.  The  
hyperparameter vector (θሻ	 is defined as purely spatial (θଵ), temporal (θଶ) and the 
unstructured random effect for vessels (θଷ). 
 
The final model contained 60 spatial layers (5 years by 12 months) in which each cell 
is connected with an AR(1) process.  The dimensions of the parameter space for the 
volume of available data exceeded the limits of what could be processed in R-INLA 
with our space-time model as defined above, on a 3.5 GHz Intel Core and 16  GiB 
RAM.  In order to make computation more tractable, we took advantage of the 
Bayesian approach, by splitting the data set into three blocks of 20 year-month 
layers each.  This made fitting the model relatively tractable with a standard desktop 
computer.  The model was fit to each block sequentially, using the posterior 
estimates of the model hyperparameters as priors for the following block of data. 
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4.2.4 Cross Validation 
 
We used a cross-validation procedure in order to assess the ability of the model to 
forecast fish spatial distribution one-month ahead.  The last 22 year-month layers 
were independently forecasted and the forecast compared with observed data.  For 
each layer to be forecasted, priors for the model hyperparameters were taken as the 
final posteriors obtained from section 2.2.3 above, and latent random fields were 
estimated using the 12 months preceding the target layer.  Following Blangiardo & 
Cameletti (2015), we use R2 as a measurement of the goodness-of-fit of each year-
month layer predicted.  R2 was computed as the squared of correlation between 
observations and prediction on log-log scale. 
 
4.3 Results 
 
Figure 2.1 shows the results of the marginal effect of depth across months using the 
pre-computed GAM model.  Several months have a bi-modal distribution of juvenile 
cod in depth.  This means that juveniles have preference for either shallow or deep 
waters.  The overall performance of the model is adequate, with a R2=0.92, 
indicating that explanatory variables chosen in Table 2.1 were adequate and 
resulting model explained a good percentage of the total variance (Figure 2.2).  
However, the model tends to overestimate the observed low count and zero 
observations, and thus the bottom-left corner in Figure 2.2 does not follow the 1:1 
relationship between observations and predictions.  The posterior predictive p-values 
agreed with this rather poor fitting of low observed counts.  When observations 
matched prediction well, histograms of the predictive p-values will have a uniform 
distribution (Blangiardo & Cameletti 2015).  However, in Figure 2.2 high frequency in 
p-values close to 0 and 1, is an indicator the model may not be adequate to 
represent both, very low or high numbers of undersized cod. 
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Figure 2.1: Marginals for depth (relative to the mean) by month from GAM model in 
Eqn (3). 
 

 
 
Figure 2.2: Goodness-of-fit of the general model in Eqn (2).  Left panel shows the 
observation vs predictions in log scale.  Right panel is the histogram of predicted p-
values. 
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High seasonal and annual trends in spatial distribution were detected.  In Figures 2.3 
and 2.4 we show predictions for February and August across years, respectively.  
These two months were chosen because they represented a large number of 
observations coming from fisheries and survey data.  Large values of observed 
CPUE in Figures 2.3 and 2.4 (large open circle), tend to be clustered also around 
large predicted values, indicating the model matched well spatial predictions.  High 
intra-year variability is found (Figure 2.5).  This variability seems to be in groups of 
three months (i.e the block January – March is relatively homogenous but different 
than blocks for April to June). 
 

 
 
Figure 2.3: Predictions of juvenile cod (log of counts) on February between 2012 
and 2015.  Circles in each plot represent the observed juvenile cod CPUE from 
survey and observed data.  Size of circles represent the relative magnitude of CPUE 
in each year-month. 
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Figure 2.4: Predictions of juvenile cod (log of counts) on August between 2012 and 
2015.  Circles in each plot represent the observed juvenile cod CPUE from survey 
and observed data.  Size of circles represent the relative magnitude of CPUE in each 
year-month. 
 

 
 
Figure 2.5: Predictions of juvenile cod (log of counts) by month for 2014. 
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Cross-validation shows high variability on the forecasting across months.  R2 
between forecasted and observed values ranged from 0.1 to 0.6 with an average 
R2=0.35 across all months analysed (Figure 2.6).  Forecasting in each year-month 
layer showed high variability (Figure 2.7), indicating the modelling framework was 
capable of reproducing the observed intra-annual variability. 
 

 
 
Figure 2.6: Goodness-of-fit of cross validation for each year-month layer predicted. 
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Figure 2.7: Forecasting of juvenile cod by months in relative units (scale to mean of 
each month).  Results from cross-validation analysis, first block of years. 
 
4.4 Discussion 
 
The modelling approach merged commercial fishing and survey data to predict 
spatio-temporal distribution of juvenile cod in the North Sea.  One of the main 
strengths of this approach is to combine information about catch rates of different 
vessels, gears, areas using the same idea underpinning effort standardisation.  This 
means, using an additive model structure in which heterogeneity in catch rates 
caused by factors affecting catch rates are incorporated into a model via fixed or 
random effects.  Another important strength of this approach is the use of GMRF, 
which allow the modelling of fine spatial resolution.  In addition, Bayesian inference 
permits a comprehensive incorporation of the uncertainty, because it takes into 
account error in the observations and in the latent field. However, the use of GMRF 
is computationally intensive, and thus, some trade-off had to be considered.  We 
assume that seasonal variations in spatial distribution of juvenile cod occurs at a 
wide spatial resolution, and thus, we applied a spline based model for those fixed 
effects.  There are a few ways to improve this issue.  One solution is to model 
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seasonal spatial structure using also GMRF, but computation is not tractable for the 
spatial scale considered using a state of art desktop computer.  The overall model 
could become tractable if the spatial scale became smaller.  This means, divided the 
modelled area of the North Sea into smaller units that can be assumed as 
homogenous in some juvenile cod characteristics (e.g. distribution of nursery areas).  
Nevertheless, the model seems to represent well the fine spatio-temporal distribution 
of hotspots of juvenile cod at reasonable computation cost, and this will be an 
important framework for developing effective real-time management schemes in the 
future.  The modelling of a fine scale spatial pattern in many cases will prove more 
useful for the fishing fleet in terms of fishing suitability maps.  Such approaches 
would be interesting when modelling species showing strong aggregating behaviour, 
or species that are tightly linked to a certain habitat (see Lichstein et al. 2002}.). 
 
The real-time spatial management systems in place in some US Pacific fisheries are 
based on almost daily submissions of logbook catch-data by the skippers (see Little 
et al. 2015).  In such systems, data rarely feed into a predictive model, but instead 
into algorithms creating polygon-based by-catch risk zones, much like the Real Time 
Closures operating in the North Sea mixed demersal fisheries.  Within such 
framework, the real-time aspect of data processing became a key issue, because the 
empirical nature of the approach does not allow predictions.  As an alternative, a 
model-based approach produces predictions of risk or fishing suitability maps with 
commercial fishing operations data continuously feeding a model upon which model 
predictions can be updated.  Modelling framework proposed here, can be seen as a 
medium complexity alternative between the pure empirical approach of polygon-
based bycatch analysis and the mechanistic approach proposed in Kristensen et al 
(2015).  Such mechanistic approach is based on survey data alone, in which 
population parameters, such as growth and fishing mortality, were incorporated into 
a spatio-temporal statistical model to estimate how size and spatial distributions 
developed in time, which could predict by-catch risks for any location and time.  
However, there is a trade-off between increasing ecological realism and 
computational feasibility, and acquiring enough data to ensure reliable estimated 
parameters.  We do not offer a mechanistic inference for the underlying process 
determining the observed pattern, but rather we modelled observations to predict the 
spatio-temporal dynamics of juvenile cod.  The pure mechanistic approach in 
Kristensen et al (2015) relies on survey-based information, while the framework 
proposed here added also commercial fishing operations. 
 
There are many other sources of commercial data that could potentially be used for 
inference about spatial distribution of juvenile cod.  In this paper, data from the 
Scottish discard observation program were used, but a natural extension could be to 
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use landings data, which are available on much higher temporal resolution as all 
landing have to reported, while only a small subset of fishing trips have on-board 
observers.  However, the challenges with using landings data to infer spatial 
distribution lie in how to properly estimate the total catch at each haul location, as 
only the landed component is recorded in that data, and geo-referencing is not 
available on a haul-by-haul resolution.  Under a Landings Obligations in the EU, this 
may well change as the entire catch must be landed (initially TAC species), which 
could open up this under-utilized source of catch data for use in spatio-temporal by-
catch models. 
 
The approach proposed here, in which commercial data is coupled with scientific 
survey-data, recognises the strengths of each data source; the high temporal 
resolution of commercial data and high spatial resolution of the survey data.  The 
results presented a modelling approach for further utilizing non-standard fisheries 
data to infer spatio-temporal distribution.  This is a highly topical area for fisheries 
research today, as there is an increasing demand to develop high-resolution spatio-
temporal modelling approaches to infer fish-stock distribution for management 
purposes. 
 

5 How Spatio-Temporal Information is Used in the Management of a 

Pacific Groundfish Fishery 
 
The Pollock stock in the EBS is considered to be one of the best managed fisheries 
in the world.  In 2015 it comprised 67% of the total groundfish catch off of Alaska 
(Ianelli et al. 2015).  The status of the Pollock stock is evaluated annually with 
respect to two components of performance: a) stock status with regard to fishing 
mortality and yield; and b) bycatch corresponding to the incidental catch of chum and 
chinook salmon.  Thus, bycatch targets form explicit management targets that are 
supported by federal legislation.  Exceeding these targets would result in industry 
shut-down.  This legislation effectively incentivises the fleet to develop optimal 
targeting strategies. 
 
To meet these strict targets for bycatch reduction the industry began developing 
methods for the real-time, verifiable reporting of bycatch at sea in the 1990s.  
Measures included the use of a trained observers on the main fleet segments, 
access to vessel-specific VMS data, and triggers for time and area closures.  In 
combination these measures allowed so-called “rolling hotspots” (RHS) closures to 
be identified, communicated and monitored. 
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5.1 Reducing Salmon Bycatch in the Pollock Fishery Using Rolling Hotspots 
 
Salmon (chum and chinook) bycatch has been a management concern in the Pollock 
fishery for over twenty years.  In the 1990s, regulatory Salmon Saving Area Plans 
(SSAPs) were introduced to manage salmon discards.  However, with experience it 
became evident that SSAPs sometimes shifted vessels onto fishing grounds with 
even higher bycatch rates.  In January 1999, the Pollock Conservation Cooperative 
(PCC) and the High Seas Catchers’ Cooperative (HSCC) signed an intercooperative 
agreement (ICA) to jointly harvest and allow the transfer of Pollock quota between 
cooperative members.  Although it is not written into US fisheries legislation, the ICA 
is a private and contractually binding agreement for all cooperative members.  
Individual vessels belonging to the PCC and HSCC are bound by the conditions of 
the ICA and compliance is monitored by the cooperatives themselves.  In 2001, the 
ICA was expanded to include catcher vessels delivering to motherships and 
shoreside processing plants.  The ICA introduced voluntary RHS closures to better 
respond to the rapidity of chum salmon spatial and temporal dynamics.  RHS 
closures are temporary area closures which may be fished depending on the 
particular cooperative’s (or vessel in the case of chinook salmon) bycatch 
performance.  RHS were introduced for chum and chinook salmon in 2001 and 2002, 
respectively.  In October 2005, under Amendment 84 to the Bering Sea and Aleutian 
Islands Fishery Management Plan (BSAI FMP), all vessels participating in the RHS 
programme were made exempt from regulatory SSAPs. 
 
Sea State, Inc. is contracted by the PCC to receive, monitor and evaluate catch and 
bycatch data in the chum and chinook salmon RHS programme on behalf of the 
cooperative.  The locations of the RHS are determined from real-time bycatch 
information provided by trained observers in combination with landing reports from 
shoreside processors.  Under the RHS scheme vessels must report bycatch 
information within 24-48 h.  Sea State, Inc. analyses bycatch data to identify straight-
edged polygon hotspots on a bi-weekly basis.  Each week fishing cooperatives are 
allocated to one of three “tiers” according to their bycatch performance for chum 
salmon over the last three weeks, expressed relative to the fleet’s average 
performance.  For chinook salmon the comparisons are made over the same time 
periods at the level of the individual vessel, not at the cooperative level.  Tier 1 is for 
cooperatives/vessels with the best bycatch performance, tier 2 for medium 
performance cooperatives/vessels and tier 3 for worst performing 
cooperatives/vessels.  These tiers determine the amount of time a 
cooperative/vessel will be forbidden to fish for Pollock within the RHS closures the 
following week.  Tier 3 vessels are prohibited from RHS for 7 days, tier 2 vessel for 3 
days, while the tier 1 vessels are not prohibited from fishing in the RHS closures.  In 
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other words, cooperatives/vessels that are able to fish cleanly are not restricted from 
the RHS closures.  This form of performance-defined access incentivises the need 
for a cooperative or vessel to reduce bycatch. 
 

To support the implementation of RHS closures, salmon bycatch data are submitted 
to the authorities in quasi-real-time (within 24-48 hours) by observers on-board the 
vessels.  There is 100% fishery observer coverage for all vessels in the Pollock 
fishery that is entirely industry funded.  The bycatch data are uploaded to a central 
National Oceanic and Atmospheric Administration database but each cooperative 
has access to their own data.  To support the ICA, Sea State, Inc. monitors the 
compliance of individual vessels belonging to the cooperative with the terms of the 
RHS scheme by comparing VMS records against observer data.  Sea State Inc.’s 
compliance monitoring is audited to avoid any criticism of a third-party monitoring.  
According to the American Fisheries Act (AFA), the ICA must report their bycatch 
performance annually (PCC and HSCC 2013) because in essence the ICA is co-
managing the stock with the North Pacific Fisheries Management Council (NPFMC; 
http://www.npfmc.org/).  Sea State Inc. reports on the performance of individual 
vessels in terms of bycatch to the ICA on a weekly, rolling fortnightly and seasonal 
basis.  As well, reports are prepared for a range of public agencies such as tribal 
stakeholders. 
 
5.2 Technicalities of Implementing a Bycatch Reduction Scheme for Chinook 

Salmon 
 
The chinook salmon is the largest salmon species in the Pacific and is known as the 
"king salmon" in Alaska.  The ICA developed an incentive plan agreement (IPA) and 
performance-standard requirements specifically to minimize bycatch of chinook 
salmon so as to meet these regulatory requirements (failure to meet them would 
result in industry tie-up).  The IPA was informed by the experience gained in the 
development and refinement of RHS programs.  It restricts the Pollock fishing 
opportunities of vessels with poor chinook bycatch performance while allowing 
vessels with good performance unimpeded access to the fishing grounds (tier 1, 2, 3 
designation).  Avoiding such restrictions reduces operating costs and allows for the 
production of high-valued products, thus increasing profitability.  The IPA rewards 
good vessel chinook bycatch performance irrespective of Pollock or chinook salmon 
abundance.  The chinook IPA can be found online at 
https://alaskafisheries.noaa.gov/sites/default/files/chinook_salmon_ipa_2010.pdf. 
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Sharing information about chinook bycatch is at the heart of the IPA.  The specific 
components of the IPA for chinook therefore include: (1) data gathering, bycatch 
monitoring, reporting, and information sharing; (2) identification of “bycatch 
avoidance areas” which are the equivalent of RHS; and (3) fishing-area prohibitions 
for vessels with poor bycatch performance.  In this way, the IPA operationally defines 
an approach to achieving the bycatch regulations of the BSAI FMP that was 
designed by industry using past experience with spatial selectivity. 
 
At the start of the 2011 fishery, Amendment 91 to BSAI FMP came into effect.  
Amendment 91 is an innovative approach to managing chinook bycatch that 
combines a prohibited species catch (PSC) limit, or cap, on the amount of chinook 
salmon that may be caught incidentally by the fishery and performance-standard 
requirements designed to minimize bycatch to the extent practicable in all years.  
The total chinook salmon PSC cap of 60,000, with a performance standard, or target, 
of 47,591 chinook was incorporated into the IPA. 
 
5.2.1 Effectiveness of the IPA for Chinook Salmon 
 
The success of the bycatch reduction programme can be difficult to demonstrate as 
the most dramatic reductions occurred by keeping the majority of the fleet from 
moving into areas of very high bycatch.  This is analogous to trying to prove the size 
of a fish that got away or demonstrating prevention of an accident that never 
happened.  Logically, the potential for further high bycatch exists when one or two 
vessels encounter extreme hotspots.  Without disseminating knowledge of the 
location of these hotspots other boats would have likely entered those areas. 
 
A recent report assessed the impact of Amendment 91 in 2011 for reducing chinook 
bycatch on the bycatch performance of the fleet and individual vessels (Madsen and 
Haflinger 2015).  Chinook bycatch performance (number of chinook per ton of 
pollock caught) of IPA vessels improved following the implementation of Amendment 
91 (Fig. 3.1), as compared with the previous four years.  Variability in environmental 
conditions and salmon abundance could have played a role throughout this time 
period, however, the improvement is consistent over time.  Vessel bycatch rates are 
currently among the lowest on record, and the variability of bycatch rates among 
vessels has been reduced relative to pre-2011 years with similar average bycatch 
rates.  This provides quantitative evidence of the effectiveness of the vessel-level, 
by-catch incentives. 
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Figure 3.1: Chinook bycatch rates (n/mt) by year for the Catcher Processor (CP), 
Catcher Vessel (CV), and Mothership (M) pollock fishing sectors in the Bering Sea 
(from Madsen and Haflinger 2015). 
 
5.3 The Evolving Role of Sea State Inc. in Monitoring Bycatch 
 
When the bycatch reduction programme began in late 1990s (with the first ICA) the 
industry began funding the collection of observer data.  Early attempts to reduce 
bycatch of salmon through sharing observer data were largely ineffective due to the 
“race for fish”.  However, the Pollock industry continued to fund the observer 
program as part of the arrangement by which they access the resource.  In this 
respect, the catch data is a useful byproduct of the fishery.  At this time Sea State, 
Inc. was contracted to manage the database.  To do this, they pioneered early forms 
of information sharing and mapping capabilities by equipping wheelhouses with 
plotters.  Overall, these reporting procedures were felt to be successful in that fishing 
seasons were kept open longer than would otherwise have been expected, due to 
cooperation amongst fleet in moving away from areas of high bycatch. 
 
In 1998 the AFA effectively ended the “race for fish” in the Pollock sector.  In 1999 all 
sectors came together to write the first ICA designed to prevent closures of their 
fishery based on chum and chinook salmon bycatch.  This effectively restructured 
the industry into a fully functioning cooperative and ushered in greater engagement 
in co-management of the resource.  The regulatory need to meet strict bycatch 
targets under full observer coverage has enshrined spatial selectivity as an operating 
principle.  Over the years Sea State, Inc. has incorporated a range of information 
and communication technology (ICT) advances (summarised below).  Spatial 
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management measures also include multiple conference calls that often include 
skippers as well as cooperative managers having a fleet-wide knowledge of 
cooperative performance.  In combination, these methods effectively constrain the 
behaviour of individual vessels belonging to cooperatives operating under the highly 
prescriptive terms of the IPA. 
 
5.4 Summary of discussions with Sea State Inc. 
 
The one-day discussion was split into three sections: 1) general observations on 
bycatch reduction solicited in an unstructured way; 2) discussions focussed around a 
demonstration of the software used by Sea State Inc. to gather data, analyse data, 
report data and disseminate information to the industry; and 3) a discussion of 
modelling approaches that could be used to enhance the analysis of available 
industry data.  This write-up summarises those discussions by focusing principally on 
the following components of the IPA: data gathering, reporting, bycatch monitoring 
and information sharing (Sections 3.4.2, 3.4.3, 3.4.4 and 3.4.5, respectively).  
General observations that fall outside those components are noted immediately 
below. 
 
5.4.1 General Observations about Bycatch Reduction Schemes 
 

 The IPA can be considered a direct example of results-based management 
(Nielsen et al. 2015) specific to achieving federal regulations related to 
bycatch reduction.  The IPA defines the means by which the ICA effectively 
co-manages the stock with the NPFMC. 

 Bycatch reduction schemes work well when the fishery is not open access 
and that there is no “race for fish”.  It would be impossible to implement them 
in an open access fishery.  As was described above, the “race for fish” in the 
EBS effectively ended in 1999 with the implementation of the AFA and the 
restructuring of the industry into fishing cooperatives through the ICA. 

 The IPA is in principle voluntary but only in the sense that membership in a 
given cooperative is voluntary.  Once a vessel joins the cooperative then it is 
bound to the terms and condition of the cooperative’s own IPA.  In this sense, 
the cooperative is ensuring compliance on vessels.  The regulatory agency is 
uninvolved in the technical means by which bycatch is reduced, i.e., the IPA. 

 The ICA uses a “name and shame” approach to identifying individual vessels 
with poor bycatch performance.  This works by applying a form of moral 
persuasion for skippers to comply with industry-defined bycatch targets.  The 
reporting performance of an individual vessel confers bragging rights on 
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vessels that are performing well.  There is a distinct skipper effect on bycatch 
performance. 

 Bycatch of chinook and chum salmon is approximately 4% and 1% of the total 
stock size of each salmon stock, respectively.  Because bycatch is such a 
small proportion of the total mortality on salmon, bycatch reduction will have 
minimal impact on overall rates of stock rebuilding.  The creation of bycatch 
targets by Amendment 91 of the BSAI FMP on the Pollock fishery can be 
more accurately viewed as a mechanism by which the Alaskan fishing 
industry shares the burden of salmon conservation. 

 
5.4.2 Data Gathering 
 
As noted above, the observer programme provides 100% coverage and is financed 
exclusively by industry.  Private contractors supply personnel and the National 
Marine Fisheries Service (NMFS) providing the observer training including software 
training.  NMFS uses the observer data to monitor bycatch performance of the fleet.  
Observers have differing degrees of sophistication in how they interact with the 
software.  At sea, each haul is sampled for species composition and the total weight 
caught is recorded.  Large hauls are handled differently with some sub-sampling and 
then raised to the proportion of total catch which was sub-sampled. 
 
Observer data from catcher-processors and larger trawl catcher vessels are 
generally available to Sea State Inc. one to two days after a haul has come aboard a 
vessel.  The magnitude of the time lag depends on how often the observers enter 
their observations into the computers they use for reporting and how often they 
actually send those data electronically to the observer office at NMFS.  Once the 
data arrives at NMFS it is scanned for obvious errors by software prior to being 
made available for download by users (e.g., government scientists, Sea State Inc on 
behalf of the cooperative).  There are often changes to the data that emerge up to 
several months after initial receipt, as observers make their way back to shore for a 
final "debriefing” after which the data are considered final. 
 
The process of downloading data has been automated by Sea State Inc. and the 
program currently runs four times daily.  In the past, Sea State Inc. used to "hand-
build" reports with various tables of bycatch rates and the types of maps that a 
particular bycatch avoidance program required.  However, they are moving towards 
automating as much of the reporting as possible so that information can be provided 
to the fleet in a more timely way (independently of human analysts to process and 
disseminate).  The email message shown in Fig. 3.2a is one example.  It was 
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generated at 02:00, after the midnight download of data from NMFS was processed 
and analyzed by the software to see if any alarms had been triggered.  As it did 
trigger an alarm the email was distributed to the fleet automatically. 
 
Shoreside landings data are also an important component of the bycatch database.  
These landings data cannot be accessed until after a vessel actually offloads.  
Shoreside plant personnel generally send an initial report to the State of Alaska 
within 12 hours of a vessel landing, and generally have a fully updated and edited 
report with final numbers, within several days. 
 
5.4.3 Reporting 
 
Karl Haflinger initially created the software for capturing, analysing and distributing 
data via a protected website.  The software was upgraded several years ago by a 
programmer in Juneau (Eric Torgerson, Chordata Inc) with expertise in fisheries 
software and database development.  The EBS fishing industry has excellent access 
to the internet at sea via satellite communications.  The software is designed to 
make efficient use of bandwidth by prioritising the transfer of essential information.  
The Sea State Inc. databases are physically housed in a server located in the states 
of Michigan and Arizona which has thus far proven to be reliable, secure and cost-
effective. 
 
Although the Pollock fishery is the focus of this FISA report, the Sea State Inc. 
database covers all of the federal groundfish fisheries in the EBS and Aleutian Island 
region, and the whiting fishery off the coast of the Pacific Northwest (Washington 
and Oregon).  Several different data types are stored for analysis by the software 
including: observer data; VMS data; production data from shoreside plants and 
catcher/processors; and shoreside landings data.  The observer data are obtained 
on a semi-continuous basis (as described above).  Different types of data products 
are relevant to different fisheries so there is a degree of customised programming 
that needs to be done for each reporting requirement. 
 
A key principle in software design is that individual vessels can access their own 
data and use the Sea State Inc. software to generate reports that summarise their 
bycatch caught to date against the allocation they have for a given fishing year.  
They can schedule the delivery (via email) of reports according to how frequently 
they wish to be updated.  It is important to note that an individual vessel does not 
have access to catch information about target species from other vessels although 
catch information about bycatch species is shared across the fleet.  Many fishing 
cooperatives have cooperative managers who have access to these information 
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sources and who would undertake some of the detailed analyses of performance.  
Karl Haflinger does this analysis in his role as cooperative manager for several 
smaller fleets.  Larger fleets would have their own analyst, e.g. the cooperative 
manager. 
 
5.4.4 Bycatch Monitoring 
 
Bycatch rates are reported in a standardised unit that corresponds to the number or 
weight of salmon caught incidentally divided by the metric tonnes of Pollock caught.  
Further details of this calculation can be found in the IPA 
https://alaskafisheries.noaa.gov/sustainablefisheries/bycatch/salmon/chinook/ipa/chi
nook_salmon_ipa_2010.pdf  
 
If a haul having high bycatch is reported then an alert is sent to the industry with a 
link to a report showing a map with the geographic coordinates of the haul and basic 
information about the bycatch (Figure 3.2a). 
 

This message was generated on 9/21/2015 at 2:10 AM 

 

All high bycatch hauls: 

https://acct.seastateinc.com/Seastate/Members/AfaPollockMap.aspx 

 

AFA CP Haul 159 on 9/20/2015 has a total catch of 112 Chum Salmon. 

This is 1.1 x the alarm threshold of 100. 

Latitude: 55 8.90 N 

Longitude: 167 32.00 W 

VMS track: 

https://acct.seastateinc.com/Seastate/a.aspx?p=1&a=1799&h=6ef5ff0ba5

71b21a81882b50969b8c49 

 
Figure 3.2a: Example of an alert sent automatically by email to cooperative 
members to report a haul having a high bycatch.  Haul VMS track is given on a 
clickable link.  This shows high bycatch tracks from the last 2 weeks of the fishery.  
Skippers can access this information at sea by reading their email. 
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Figure 3.2b: Example of the map that is embedded in the alert message (Fig 3.2a).  
The VMS tracks of hauls that caught chum salmon are shown in blue and chinook in 
red.  The darker the colour the higher the bycatch rates (scales are shown at the 
bottom right).  The individual hauls that are shown are identified on the top right of 
the image. 
 
5.4.5 Information Sharing 
 
A key design principle in designing the IPA has been that individual skippers should 
be able to access their own data on demand.  Different levels of access are 
accorded to different roles: for example, the cooperative manager can access data 
for all vessels in the cooperative.  Over time, the skippers in the Pollock fisheries 
have become “information junkies” in the sense that there is a very high demand for 
the type of highly resolved spatio-temporal information that is currently being 
disseminated.  The increasing reliance on the information being generated by the 
observer programme serves to reinforce industry’s commitment to funding the 
programme.  Fishing success, including profitability, is increasingly determined by 
having successful tactics.  Tactical fishing strategies (where to fish and when) are 
being heavily influenced by real-time reporting.  This incentivisation to avoid bycatch 
is partly driven by the terms of the IPA which grants access to fishing grounds (the 
RHSs) according to bycatch performance.  In a sense this creates a virtuous circle 
within the cooperative: improved information leads to improved profitability leads to 
improved information. 
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5.4.6 Quantitative Analysis of Bycatch Data 
 
5.4.6.1 Rolling Hotspots and Access to Them 
 

Karl Haflinger, serving as either the administrator (for large fisheries such as EBS 
Pollock) or cooperative manager (for some smaller fisheries in the EBS), has access 
to all data for the cooperative.  Using the bycatch data he designs the RHS as 
polygons according to pre-specified designs (with some flexibility).  This requires 
some expert judgement, incorporating experience of spatial and temporal patterns in 
distribution of the bycatch species.  Some RHS closures repeat themselves over 
time and there may be short-term impacts of temperature (warm vs. cold years) and 
longer-term climate change impacts.  Week-old data is the most relevant for defining 
RHS.  Data that is more than two weeks old is starting to get old, illustrating how 
quickly the information value of bycatch data decays.  This rapid decay is relevant to 
developing more advanced data processing (i.e., described in Section 2).  Models 
need to run on highly resolved time and space scales to be useful to the industry. 
 
RHS closures are in effect until the next closures are announced in 3 or 4 day 
intervals, when a RHS closure could be discontinued if data from Tier 1 vessels 
showed no problems.  In the absence of new data from the closed area a RHS 
closure may simply be extended for up to two weeks.  In this case Sea State will 
simply re-announce the same closure coordinates at the next scheduled closure 
announcement.  As noted above, Tier 3 vessels are prohibited from RHS for 7 days, 
tier 2 vessels for 3 days, while the tier 1 vessel are not prohibited from fishing in the 
RHS closures.  In the case of chum salmon, Tier 1 cooperatives are defined as those 
cooperatives having in aggregate (over the previous 3 weeks) less than 75% of the 
2-week average bycatch rate.  Tier 2 cooperatives are those with an aggregate catch 
of chum salmon between 75% and 125% of the average rate.  Tier 3 cooperatives 
have greater than 125% of the average rate.  For chinook salmon, which is the more 
rare and sought-after species, these same definitions apply but at the individual 
vessel level instead of at the level of the cooperative.  Individual vessels frequently 
have their own tradable quota of chinook. 
 
5.4.6.2 Spatial Mapping  
 
The software Sea State Inc. uses has visually impressive, GIS-like mapping 
capabilities (see Fig. 3.2b, Fig 3.3).  The bycatch information has been reported in 
the form of “heat maps” with catch rates reported for grid cell.  Alternatively, the 
information can be presented by showing tracks for the individual hauls with the 
track-specific bycatch information revealed when the mouse is positioned on the 
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track.  Bathymetry is shown for reference.  The programming utilises the functionality 
of Google Earth and is therefore non-proprietorial. 
 

 
 
Fig. 3.3: Map indicating the lowest 50% of salmon bycatch values (green), 50-80% 
values (yellow), and top 20% (red).  Additional layers can be added to show the 
locations of rolling hotspots closures. 
 
5.4.6.3 Future Opportunities for Modelling 
 
Sea State Inc. is currently using a model-free approach to the treatment of data in 
the sense there is no attempt to fit statistical models to interpolate information across 
time or space scales or identify hotspots via analytical means.  This overlooks the 
obvious information content of having repeated measures of abundance generated 
from multiple hauls in the same area.  This also overlooks the large amount of 
information contained in past data, which can serve to map background expectation 
of catch (long-term average) where up-to-date data are unavailable.  Both the 
smoothing of real time data and the blending of real-time and historical data require 
specifically designed models to apply appropriate weighting to each data source.  
Now that the operational aspects of gathering, reporting and disseminating 
information about bycatch have been addressed there is an opportunity to consider 
opportunities for modelling the data for scientific purposes (e.g., linking salmon 
distribution to oceanographic features) or industry use (e.g., predicting where 
hotspots are most likely to be at any given time, similar to weather forecasting).  The 
following points were made during discussion of the research potential of the bycatch 
data. 
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 Research use of the data is made somewhat problematic by issues of 

confidentiality.  There are ways around this: either by anonymising the 
individual vessel data or by aggregation across defined sectors or sub-units.  
The following research ideas were identified by our discussions. 

 Other analytical issues include how to distribute bycatch abundance for a 
single haul over the spatial path of that haul considering that bycatch 
abundance is not uniformly distributed. 

 There are types of data that would be very useful to have for modelling that 
are not contained in the dataset.  Temperature is the most obvious 
explanatory variable to consider.  The industry does not have the ability to 
generate temperature data in a scientifically valid way (e.g., calibration 
issues).  However, temperature data are available from other sources and 
could probably be integrated with the bycatch or catch datasets.  Frontal 
structure, positions of eddies and also tides are all relevant to location of fish.  
Over longer time scales this could be pursued through targeted research 
programme. 

 In essence, the bycatch database is showing the industry where bycatch 
performance is bad (negative result) but not necessarily all of the places 
where bycatch performance may be good (positive result).  This bias 
highlights risk of bycatch: the “hotspots” but it is not showing all of the 
“coldspots”.  More could be done to provide this sort of information through 
modelling. 

 Spatio-temporal hotspot models can be used to assess the co-occurrence of a 
target and a non-target species to achieve management goals relevant to the 
threatened species (Ward et al 2015). 

5.4.7 Future Directions 
 
Sea State Inc. is looking to provide more automated hotspot maps via email to 
vessels that cannot browse their website due to bandwidth considerations.  In future, 
they will hopefully be more sophisticated than the "point" map shown above (Fig. 
5.3).  For example, geostatistical methods could be applied to insure that bycatch 
trends have some statistical significance and can be relied on by fishermen. 
 
The observer programme is the backbone of the database, however, these data are 
expensive to collect.  In addition to salaries there are considerable travel expense 
incurred by flying observers to and from ports in remote areas of Alaska.  Electronic 
monitoring (EM) by CCTV is one means of reducing these costs and it is being 
trialled in the whiting fisheries off coast of Washington and Oregon.  These are full-
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retention fisheries, so all catch is essentially counted at the time of delivery to either 
a plant or mothership.  The aim of EM is to insure that vessels are complying with 
the no-discard rules.  Sea State and Chordata are working currently on a project to 
reduce the time spent reviewing CCTV data by developing computer algorithms to 
flag activity on a fishing vessel that may indicate when discards could potentially 
occur. 
 
5.5 Relevance of EBS Fisheries to Scotland 
 
Fisheries on the west coast of North America have developed comparatively recently 
and consequently have evolved very differently to the traditional fisheries on the east 
coast of North America which were developed like European fisheries (Little et al. 
2014).  West coast fisheries therefore have more examples of innovative styles of 
co-management (e.g., application of individual transferrable quotas, industry funded 
observer programmes).  It could be argued that they are closer to results-based 
management than European fisheries.  In that respect, they serve as an interesting 
model for comparison.  More specific similarities and differences are identified below 
(the list is not intended to be comprehensive). 
 
5.5.1 Similarities 
 
Reducing salmon bycatch was established as a regulatory requirement for the 
Pollock fishery in response to societal concerns about conservation of Alaskan 
salmon.  This is broadly similar to the concern about discarding rates at sea globally 
and in Europe. 

Since 2007, Scotland has operated a voluntary system of “real time” closures (RTCs) 
to help the continuing recovery of cod stocks in the waters around Scotland (Needle 
and Catarino 2011).  RTCs are one of several ‘conservation credit’ measures that 
have been taken under the EU’s Cod Recovery Plan.  Scottish vessels are allowed 
more time at sea in return for adopting conservation-minded fishing practices 
including observing RTCs.  These RTCs are analogous to the RHS in the Eastern 
Bering Sea used to avoid salmon bycatch. 

The Scottish demersal fleet is organised into separate producer organisations (POs) 
and there are several clear parallels which can be drawn between POs and fishing 
cooperatives on the west coast.  In both cases, national quota is allocated to the PO 
or cooperative by the regulator and then distributed by the PO or cooperative to 
individual vessels.  Both POs and cooperatives have reserve quota that can be 
drawn on by skippers who have exhausted their vessel allocation (who may also be 
free to lease quota separately).  PO and cooperative managers have access to 
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landings data which allows them to review how much quota remains and facilitate 
transfers.  On the west coast these advantages of membership in a cooperative 
come with the obligation to fulfil the cooperatives targets for bycatch reduction as 
specified by the IPA (see Section 3.3).  Scottish POs have the e-logbooks which are 
in several respects better real-time databases given that landings information about 
quota species is uploaded within 2 hours of the haul coming on-board.  
 
Both the Alaskan and Scottish fishing industries have access to high quality, real-
time information.  In the EBS fisheries observer data are generally available to Sea 
State Inc. one to two days after a haul has come onboard.  As there is no discarding 
in these fisheries, the catch matches the landings data.  In Scotland the current 
version of the e-logbook system makes data available to Scottish PO within two 
hours of the haul coming onboard.  In other words, the e-logbook system in Scotland 
provides a substantial resource of real-time information that is relevant to quota 
species.  What is missing from the current configuration of the e-logbook system in 
Scotland is about size structure of the catch and discarding.  This type of information 
would be required if undersized fish (juveniles) were an important contribution to 
bycatch problem. 
 
Sea State Inc also applies the principles of real-time reporting to demersal fisheries 
on the Pacific Northwest (off the coast of Washington and Oregon).  The Pacific 
Northwest bycatch situation is very similar to the Scottish situation.  In this region, 
shore-based trawlers have limited quota allocations of whiting and other demersal 
species.  Discarding is not allowed at sea.  As is the case in the North Sea there is a 
mismatch between fishing opportunity and restricted quotas that effectively creates 
choke species (e.g., rockfishes).  Due to the unpredictable distribution of choke 
species in space and time they are difficult to avoid catching and the quota allocation 
for these species may be insufficient to cover what is caught by an individual vessel.  
The term “lightning strike” is used to refer to the possibility that one vessel will be 
unlucky and use up or exceed the entire bycatch allocation for the fleet in a single 
haul.  A lightning strike haul has the potential to shut down the industry.  In response 
to this risk, the fishing cooperatives have self-insured against “lightning strike” hauls 
by forming a risk pool.  The relevance of this approach will be explored in greater 
detail in a FIS project (FIS 011B SMARTFISH: Selective management and retention 
of target fish). 
 
5.5.2 Differences 
 
The spatio-temporal distribution of salmon bycatch is semi-predictable in the sense 
that salmon undertake annual migrations and therefore the bycatch problem is 
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narrowly constrained in both space and time.  While they are migrating to natal 
rivers, salmon are captured by a high proportion of vessels (albeit to differing 
degrees as reflected by Tier 1,2,3 designation of cooperatives or vessels) rather than 
a lightning strike haul.  Thus, the bycatch problem is likely to impact a high 
proportion of vessels.  In the North Sea mixed fisheries a particular choke species 
may have a less predictable spatial and temporal distribution which is likely to be 
highly modified by fluctuations in abundance or climate-induced shifts in 
biogeography (e.g., hake).  This might make the information less valuable 
particularly if there is not a high number of observations. 
 
The EBS fisheries have the key advantage of 100% observer coverage of their fleet 
which is entirely funded by industry.  The observer coverage in Scotland, which both 
MSS and the SFF conduct, is much less extensive.  The MSS programme was 
originally designed (in 1978) from a stock assessment perspective, not a regulatory 
or enforcement one.  MSS observers are not required to enforce a discard ban and it 
would greatly undermine their ability to collect scientific data should they be required 
to do so.  The SFF, through SFF Services Limited, manages a team of fisheries 
observers who collect data for the Independent Onboard Observer Scheme which 
supports and informs the joint Industry/Government Fisheries Management and 
Conservation Group.  The activities of this programme are growing and there is 
desire to utilise the resulting data in more ways than just informing the annual stock 
assessment process. 
 
5.6 Conclusions 
 
Reflecting on Sea State Inc.’s experience (> 25 years) with spatial management of 
EBS fisheries there would seem to be two distinct phases of developing improved 
information flow for reducing incidental bycatch in fisheries.  Phase 1 is creating a 
mechanism for the data gathering, monitoring, reporting, and information sharing.  
This was the principle focus of part of the discussions with Sea State Inc (Section 3) 
Phase 2 is the more detailed statistical modelling, or post-processing of the bycatch 
data so as to generate predictive capability (Section 2).  Phase 2 can both 
supplement the information generated in Phase 1.  Furthermore, predictions from 
Phase 2 can be semi-continuously tested against data provided by Phase 1 creating 
a rolling validation that would reveal aspects of model performance. 
 
Over the past two decades, the EBS fishing industry has passed through the 
developmental stage of Phase 1 but have not yet embarked on Phase 2.  They have 
at their disposal a large, georeferenced database that can now be used for research 
purposes and to provide industry with some analytical insights into the dynamics of 
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fish distribution over space and time.  This should allow for a more profitable and 
efficient industry which offsets the costs of funding the data collection process (from 
observer programmes to contracting Sea State Inc).  Access to world-leading 
fisheries scientists in the Seattle area could facilitate cutting-edge research into 
spatio-temporal dynamics of the EBS and Pacific Northwest fisheries. 
 
In Scotland there is no impediment to Phase 1 and 2 developing in parallel, building 
on previous experience with real-time reporting and bycatch reduction in the EBS, 
the Pacific Northwest (Section 3), the east coast of the US (O’Keefe et al. 2014) and 
also the UK (Hetherington et al. 2015). 

6 Consultation with the Scottish Stakeholders 
 
During the course of the FISA project several formal and informal consultations with 
industry and Marine Scotland took place including: 

24 June 2016 – meeting of Scottish Discard Steering Group (Aberdeen) 
13 July 2016 – Industry and Policy Day, International Institute of Fisheries 
Economics and Trade (IIFET) Annual Conference (Aberdeen) 
10 August 2016 – presentation given to the Scottish Industry Discards 
Initiative (Aberdeen) 
23 August 2016 – break-out group discussion at the FIS Annual Scottish 
Fishing Conference (St. Andrews) 
6 September 2016 – workshop to present the EBS experience to industry with 
Karl Haflinger and Eric Torgerson (Peterhead) 
7 September 2016 - workshop to present the EBS experience to relevant 
stakeholders with Karl Haflinger and Eric Torgerson (Aberdeen) 
8 September 2016 – meeting with David Anderson of Aberdeen Fish 
Producer’s Organisation with Karl Haflinger and Eric Torgerson (Aberdeen) 
30 September 2016 - meeting with Neil Campbell and Thomas Reilly of 
Marine Scotland - Science to discuss the observer and VMS databases 
27 October 2016 – follow-up meeting with David Anderson of Aberdeen Fish 
Producer’s Organisation 
October 2016 – follow-up discussions with several Shetland Producer’s 
Organisations (conducted by Chevonne Angus of NAFC) 
 

Detailed summaries from the two workshops (6th and 7th September 2016) will be 
written up separately for FIS011B so they will not be summarised here.  Brief notes 
summarising the main points of the other meetings are given below. 
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6.1 Scottish Discard Steering Group 
 
This day-long meeting was useful for informing the steering group about work being 
done by the University of Aberdeen and meeting representatives from a number of 
Scottish POs.  Potential solutions for the landings obligation (LO) problem were 
identified as: gear selectivity, avoidance, flexibility and quota swapping.  The latter 
was discounted as there is generally insufficient quota available for swapping for the 
species that are required, e.g. choke species.  There are already some solutions 
being applied for gear as skippers change gear to avoid problems.  Similar to the risk 
pool used in Pacific Northwest fishery (see Section 2.2.2 in FIS011B Report 2017) 
there are arrangements for banking and borrowing quota.  Informal discussions with 
some of the skippers in attendance revealed that skippers are already sharing 
information about catch across a small network of peers via social media.  This is 
evidence of the utility of the information for skippers.  Despite this evidence that 
information about location of bycatch hotspots is desirable reservations were 
expressed about the principle of getting skippers to share information.  This is 
somewhat contradictory viewpoint: real-time reporting is useful so we are doing it but 
it won’t work more widely. 
 
6.2 International Institute of Fisheries Economics and Trade 
 
The issue of gathering and processing information was widely discussed at the IIFET 
conference during its Industry and Policy day.  Several Scottish POs attended the 
Industry and Policy day, chairing and contributing to discussions.  Advances in 
electronic reporting and monitoring were frequently mentioned in a number of 
presentations.  The same ultimate aspiration was expressed by many of the 
international attendees.  More timely information can transform the way that fisheries 
are managed.  There are many opportunities to make greater use of current data as 
well as capture new types of data electronically.  A significant challenge is to apply 
these data and technologies effectively in a policy and administrative sense.  For 
example, collecting huge amounts of CCTV footage is becoming easier thanks to 
technology advances.  A major challenge is efficiently processing this information 
and improving fisheries administration.  Working through the processes and policies 
for managing fisheries data was felt to be as important as developing the technology 
to gather and process it. 
 
International interest in real-time reporting were noted including the following: 

 In New Zealand if the skipper can’t cover catches with available quota by the 
year’s end then a fine (“deemed value”) is levied which is set at levels to 
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encourage landing but discourage over-catch.  Real-time information sharing 
is being explored as a means to reduce bycatch. 

 In Pacific Northwest, information and communication technology is being used 
in demersal fisheries to do hotspot mapping very similar to that being used for 
Alaskan Pollock (Sylvia et al. 2014). 

 Norway has had a discard ban in place since 1987 and uses a mix of move on 
regulations and RTCs.  Fishers keep 20% of the landed value.  Despite this, 
Norwegian discards remain significant. 

A Cornwall-based skipper, David Stevens, made a key statement at the conference 
summing up his view of how to implement bycatch reduction: “Industry can’t push for 
flexibility without transparency” and “Science not enforcement”.  Both statements are 
insightful and were referred to on several occasions. 
 
A Swedish PO noted that, during efforts to reduce bycatch, the industry sought 
assistance of the Environmental Defence Fund.  The industry felt strongly that 
fishermen needed to take responsibility for their own future.  However, the “toolbox” 
that was required to help reduce bycatch was lacking. 
 
6.3 Scottish Industry Discards Initiative 
 
Prior to the Scottish Industry Discards Initiative (SIDI) meeting a briefing note 
describing the FISA project was distributed to attendees.  The SIDI meeting had 
most of the major Scottish POs in attendance.  A half-hour presentation summarising 
material in Section 3 was given in the afternoon (the morning had been taken up by 
the implications of Brexit).  Post-Brexit in fact creates an opportunity of approaching 
the LO in a new way and customising a system for reducing bycatch that is based on 
Scottish experience.  Questions were asked throughout the presentation and 
afterwards about how real-time reporting could work in practice in Scotland.  Both 
positive and negative views were expressed about the potential for industry to share 
catch information about choke species.  It was emphasised that the goal was not to 
share information about target species.  Concern was expressed that under the LO 
the information could potential be used against them by Marine Scotland.  The point 
was made that universities are currently incentivised to bring their expertise because 
under the Research Excellence Framework UK universities must demonstrate 
“impact” on UK industries.  This creates an opportunity for partnerships such as 
those supported by FISA. 
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6.4 FIS Annual Scottish Fishing Conference 
 
A breakout group discussion was held at the FIS Annual Scottish Fishing 
Conference to discuss the ongoing FIS project 011B (SMARTFISH: Selective 
management and retention of target fish).  The group included representatives from 
industry (Tom Bryan-Brown of the Mallaig & North-West Fishermen’s Association 
and one skipper Peter Bruce).  The principle of real-time reporting was favourably 
perceived but the difficulties in convincing the industry that it was required were 
noted.  The importance of skipper’s personal knowledge was highlighted to 
underscore that technology only supplements the tactical decision making at sea.  
Concern was expressed that the information could be used against them by Marine 
Scotland.  Another important consideration is that the Scottish industry is sensitive to 
implementing, even voluntarily, conservation measures which put them at a 
disadvantage relative to other nations fishing the same stocks.  This illustrates how 
the information being shared by real-time reporting scheme needs to be viewed as 
valuable in its own right and not a burden on fishing. 
 
6.5 Marine Scotland – Science 
 
The meeting with Marine Scotland identifi ed the basic features of several geo-
referenced fisheries databases in Scotland as well as their accessibility. 
 
6.5.1 Logbook Information 
 
The fishing logbook is the primary method of data collection.  It records data on 
fishing operations by individual vessels by trip, and for each day of activity within a 
trip.  These data are available since 1964 and include details of the catch, by 
species, in terms of the presentation and quantity of fish retained on board.  
Information is also collected on the fishing gear used and the area where the fish 
were caught.  Area information are division, rectangle and zone as defined by the 
ICES.  Council Regulations 1966/2006, 1006/2008 and 1224/2009 and Commission 
Regulations 1077/2008 and 201/2010, implemented by the Sea Fishing (EU 
Recording and Reporting Requirements) (Scotland) Order 2010 (SSI 2010/334), 
require Scottish vessels (when operating in Scottish, EU and third country waters) to 
record and report fishing activity data electronically.  Software has been installed on 
board fishing vessels to record and submit data on fishing activities, with the 
expectation that electronic logbooks will eventually replace paper logbooks.  
Normally, catch data are submitted electronically within two hours of the haul coming 
on board. 
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All fishing activity data submitted electronically may be viewed by Marine Scotland 
Compliance.  Primary vessel owners can also register on their systems, allowing 
them to view activity data for their vessels over an internet browser.  The primary 
vessel owner can set up other users to view and administer their vessel activity data 
(POs or Agents).  For scientific analysis of the data MSS aggregate landing data in 
space and time, remove any unique vessel or processor identifiers, and apply a 
disclosure limitation.  Each aggregation must contain data from three or more 
vessels, and those aggregations with less than three vessels will be suppressed or, 
where appropriate, aggregated up to a higher spatial or temporal scale. 
 
The electronic reporting systems operated by fishing vessels contain a limited range 
of validation checks to help ensure correct data are reported.  In addition, to the 
validation processes, the information reported by fishermen is run through automatic 
cross-checks with other sources of information on activity available to fisheries 
administrations to ensure consistency and accuracy in the information reported.  
Landing declarations provide information on the weight and presentation of fish 
landed by species.  Landing declarations and logbooks must be submitted to 
authorities within 48 hours of landing. 
 
6.5.2 Observer Data 
 
Digital data from scientific observers is available from mid-90s and are available 
upon request from Marine Scotland.  These data do not have availability in real-time 
as the data are pre-processed and are available once the fishing trip finished.  
Observer data remove any unique vessel or processor identifiers.  Between 60 and 
90 trips are made annually to cover fishing operations in the North Sea and West of 
Scotland looking at whitefish or Nephrops (Table 1.1).  Observers monitor the 
amount of each species caught and discarded, take measurements of the size 
composition and, for a selected group of species including cod, haddock and whiting, 
collect otoliths to determine the age of the fish.  Following processing, these data are 
then submitted to ICES and combined with similar material collected in other 
countries to provide overall discard information. 
  



48 
 

6.5.3 VMS Data 
 
VMS is a form of satellite tracking using transmitters on board fishing vessels.  The 
system is a legal requirement under EC Regulation 2244/2003 and Scottish 
Statutory Instrument (SI) 392/2004.  A basic VMS unit consists of a GPS receiver 
which plots the position of the vessel coupled with a communications device which 
reports the position at a minimum of every two hours.  The unit automatically sends 
the following data on a pre-determined timescale: the vessel identification, 
geographical position, date/time of fixing of position, course and speed. 

VMS data is considered personal data so access is strictly controlled.  However, 
under the Data Protection Act vessel owners can request access to their VMS data 
in writing (by letter, fax or email).  Vessel masters can also request VMS data for any 
period in which they can prove they were master of the vessel.  From 2017 
aggregate VMS data at the level of metiers will be available for analysis. 
 
6.6 Aberdeen Fish Producer’s Organisation 
 
The Sea State Inc example highlights how real-time reporting has to be driven by 
industry needs.  The fishing cooperatives (in the US) and POs (in Europe) have a 
central role to play.  The FISA project therefore made a point of meeting different 
POs (e.g. through SIDI) and following up with more informal discussions with POs 
that seemed to be most interested in pursuing the idea.  These included Aberdeen 
Fish Producer’s Organisation (AFPO), Mallaig & North-West Fishermen’s 
Association Ltd and several Shetland POs.  Discussions with AFPO took place on 
three separate occasions during the course of the FISA project and were very 
helpful.  A serious concern is the current inaccessibility of several of the relevant 
databases in Scotland (e.g., e-logbook, VMS and observer). A considerable amount 
of IT work would be required to improve accessibility of these data for uses 
described here.  In the short term, funding support from Fisheries Innovation 
Scotland (FIS) could be sought to support this, in addition to any Marine Scotland 
funding.  Over the short term this task could be supported by funding from the EMFF. 
 
6.7 Shetland Fisheries 
 
Following up on the workshops held in September, Dr Chevonne Angus (NAFC 
Marine Centre) met with several Shetland-based stakeholders including Shetland 
Fish Producer’s Organisation (Brian Isbister) and Shetland Fishermen’s Association 
(Simon Collins and Leslie Tait).  In those discussions she summarised the EBS 
experience with a view to determining whether a similar means of real-time reporting 
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could be developed locally.  Industry representatives were interested in how the 
various data streams were used together for the real-time management.  They could 
see a lot of potential, particularly if information from the seafood auction in Shetland 
could be integrated in some way.  They acknowledged there was merit in learning 
from what is being done in the Bering Sea and cherry-picking and adapting parts of 
what is done there for local implementation.  In general, fishermen are reluctant to 
share any data which may give away their ‘hot spots’ (NB this statement applies 
more to target species.  Sharing information about choke species might be more 
acceptable).  Concern was expressed that the information they shared could be used 
against them by Marine Scotland.  This perception is partly based on their 
experience with RTCs.  Brexit is the industry’s immediate priority but in future it 
would be helpful to embark on discussions with skippers emphasising the potential 
for industry to design systems that work for them and that do not expose them to risk 
from a compliance perspective. 

7 Recommendations 
 
The modelling approach developed here was able to merge commercial fishing and 
survey data to predict spatio-temporal distribution of juvenile cod.  One of the main 
strengths of this approach is the demonstration that it is possible to combine different 
sources of information about relative fish density comparable across time periods 
and areas by standardizing catch rates of different vessels and gears.  This means 
that heterogeneity in catch rates caused by factors affecting catch rates are 
incorporated into the models via fixed or random effects, and that calibration 
between gears is estimated together with spatio-temporal changes in abundance.  
As a consequence, uncertainty in the calibration of a given gear against another is 
appropriately propagated in estimates of other parameter of the model.  Two 
significant benefits of this approach are: 1) the ability to make effective use of many 
more data than is typically done by traditional single-metier/fleet analyses, and 2) 
where the contribution of a given metier to the data set is insufficient for cross-
calibration to be reliably estimated, the corresponding data are automatically given 
less weight in the analysis. 
 
7.1 Recommendations for Further Model Development 
 
The modelling approach involves some simplifying assumptions which future 
developments of the model may want to explore more in depth.  For example, fishing 
effort is assumed to be proportional (up to a constant) to the product of trawl width by 
trawling time.  Secondly, total catch is assumed to be linearly related to fishing effort 
(essentially trawling time).  Both assumptions are likely to be violated to some extent 
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in reality.  A further assumption of our models is that cumulated catch in one location 
does not affect subsequent local fish abundance.  While it is clear that this 
assumption is untenable, it is unclear how problematic this is in practice, and unclear 
how it could be remedied until the majority of the catches is available to analyse. 
 
Another important strength of the modelling approach is the use of high resolution 
Gaussian Markov Random Fields (GMRF), which allow the modelling of fine scale 
fish distribution hotspots.  In addition, Bayesian inference permits a comprehensive 
incorporation of the uncertainty, because it takes into account error in the 
observations and in the latent field.  However, the use of high resolution GMRF is 
computationally intensive, and thus, some trade-off had to be considered.  We 
assumed that seasonal variation in distribution of juvenile cods is a large- rather than 
fine-scale spatial process (i.e. that seasonal changes affect large areas 
simultaneously).  As a consequence, we were able to reduce the dimensionality 
(reflected in the number of parameters to be estimated) of the models by 
representing seasonal changes in spatial distribution with smoothing splines in order 
to reduce the computational burden associated with fitting the models.  The splines 
were fitted as separate models without high-resolution spatial terms for increased 
speed.  The fitted spline surface was then plugged-in as a fixed covariate in final 
models along with high-resolution spatio-temporal GMRF terms, ignoring estimation 
uncertainties about the seasonal components.  Further developments of the model 
beyond the proof-of-concept stage should seek to properly account for such 
uncertainties, ideally by fitting the spline components as part of fitting the general 
model or alternatively by plugging in spline bases matrix as covariates in the model 
together with the multivariate-normal prior for the spline coefficients pre-computed 
from a previous analysis. 
 
Despite the ability to combine data from several sources in our models, not all 
existing sources of data were used in the present work.  We used data from the 
Scottish discard observation program, but a natural extension would be to use 
landings data, which are available at much finer temporal resolution, as all landing 
have to reported, while only a small subset of fishing trips have on-board observers. 
 
A difficulty in using the combined VMS & Landings data lies in the uncertainty about 
where specific portions of the total landing have been caught along the recorded 
track of a vessel.  Methods for assigning the catch spatially and probabilistically 
remain to be developed to make this source of data potentially informative at the 
spatial resolutions required by hotspot distribution models. 
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The next obvious, yet computationally challenging development of the approach will 
be the extension of our models to multiple species and multiple size classes, which 
will yet again increase the dimensionality of the models and therefore the 
computational complexity.  Benefits should include 1) an expected substantial gain in 
power for the models especially in low fish density areas, thanks to borrowing 
information across several species and size classes; and 2) the ability to predict the 
expected costs and benefits for skippers to fish in a particular area across the whole 
community of relevant demersal species.  These improvements would depend on 
having access to high performance computing facilities.  Longer run times of more 
complex models also impact the ability of the predictions to be disseminated in real-
time. 
 
Finally, a more radical evolution would be to move from current phenomenological 
models to ones based on population dynamics processes (e.g. Kristensen et al. 
2014).  It is uncertain at this stage whether this would yield a net improvement or 
loss of predictive accuracy. 
 
7.2 Recommendations for Real-Time Reporting 
 
A review of the US EBS example (Section 3) indicates that the three basic 
components of a real-time reporting system are: (1) vessel-specific reporting about 
bycatch performance; (2) alerts indicating areas of high bycatch; and (3) maps 
showing locations of high, medium and low bycatch.  In Scotland, the first 
component already exists.  The e-logbook database would be capable of providing 
real-time information about the spatial location of high catches of quota species that 
are choke species, e.g. hake or saithe, in the situation where discarding was 
prohibited (e.g., a discard ban).  Because the Scottish industry is required to upload 
catch information within two hours of the haul coming on board the turnaround time 
for observations to enter the database and become available for analysis is 
considerably better than the US.  The e-logbook database reports spatial location of 
catches at the level of ICES statistical rectangle.  This resolution is sufficient to 
proceed with developing the basic components of a reporting system: alerts and 
maps. 

 Facilitate discussions with Marine Scotland and POs regarding on-going 
improvements to the functionality the e-logbook database with the aim of 
allowing POs to download and engage with their own data in a spatial sense. 

 Identify an opportunity to develop a prototype reporting system that would 
include alerts about high bycatch of a choke species and possibly maps 
showing locations of high, medium and low bycatch. 
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 Explore the potential for VMS data being integrated in real-time with e-
logbook database in ways that would satisfy industry and Marine Scotland 
requirements for confidentiality. 

 
7.3 Recommendations for Institutional and Attitudinal Change 
 
The recommendations in Section 5.2 depend on agreement across a range of 
stakeholders that real-time reporting is worth pursuing as a strategy for bycatch 
reduction.  This agreement does not currently exist and there are serious obstacles 
which need to be overcome prior to getting consensus.  The following 
recommendations address some of these obstacles: 

 POs need to be motivated to change.  The status of the landings obligation is 
in question and Brexit is imposing unprecedented uncertainty.  On the one 
hand, this might limit the capacity of industry to consider other types of 
change (Section 4.7).  Conversely, it could give the Scottish industry greater 
incentives to custom-build more effective means of bycatch reduction.  This is 
consistent with the idea that industry needs to assume responsibility for 
solving the bycatch problem. 

 More work needs to be done to convince industry of the advantages of real-
time reporting.  Information sharing is already happening informally on small 
scales using social media.  Sharing across a trusted unit of collaboration, for 
example vessels belonging to a single PO, would increase the amount of 
information being shared thereby increasing the value of the information.  A 
formal agreement, similar to the IPA used by the Pollock industry (see Section 
3.2), would be helpful in defining information sharing protocols. 

 Industry needs to be confident that implementing change (i.e., information 
sharing) will not expose them to risk of detection of non-compliance with 
fishing regulations.  Marine Scotland needs to fully support industry adopting 
a co-management role.  This is consistent with the greater emphasis being 
placed in results-based management of fisheries. 

 As David Stephens (skipper of the Crystal Sea) noted: Industry can’t push for 
flexibility without transparency.  Flexibility needs to be accepted by Marine 
Scotland while transparency of reporting needs to be accepted by industry. 

7.4 Enabling Funding 
 
The recommendations above are very ambitious and would require substantial 
sources of funding.  Several national sources exist, principally from FIS and FISA.  
The European Marine and Fisheries Fund is a source of funding to support activities 
that are supportive of the fishing industry that might be appropriate.  Opportunistic 
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sources (e.g., H2020) also exist.  The statistical modelling described in Section 4 
could potentially attract funding from research councils given the applicability of the 
model to industry.  There is also potential for Knowledge Transfer Partnership 
funding for enabling research and co-development of tools at advantageous rates for 
the industry.  It might also be useful to explore funding sources that can support 
further collaborations with US scientists working in Alaska and the Pacific Northwest 
(e.g., conservation-oriented foundations). 
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10 Appendices 
 
10.1 Appendix 1 R Code Developed 
 
10.1.1 Appendix 1.1 Code for Pre-Processing the Data in Preparation for use in INLA 

 
install.packages("INLA", 
repos="http://www.math.ntnu.no/inla/R/stable") 
install.packages("spdep") 
install.packages("ggplot2") 
install.packages("raster") 
install.packages("rgdal") 
install.packages("rgeos") 
install.packages("RColorBrewer") 
install.packages("alphahull") 
install.packages("maptools") 
source("http://peterhaschke.com/Code/multiplot.R") 
################### 
require(colorspace) 
require(alphahull) 
require(rgdal) 
require(raster)  
require(rgeos) 
require(mgcv) 
require(ggplot2) 
require(grid) 
require(sp) 
require(spdep) 
require(INLA) 
require(RColorBrewer) 
require(maptools) 
################### 
 
dev.off(dev.list()["RStudioGD"]) #to get rid of old plots 
rm(list=ls()) #removing objects 
 
################### loading data 
ICES.shp <- shapefile("C:/Users/s04rw6/Aberdeen/ICES 
areas/ICES_16th.shp")  
UK.shp <- shapefile("C:/Users/s04rw6/Aberdeen/ICES 
areas//map.shp")  
data.fish <- read.csv("C:/Users/s04rw6/Aberdeen/msc 
thesis//NS_IBTS.csv", header=T) 
#data.obs.partial <- 
read.csv("//home//rodrigo//Escritorio//Respaldo//PC//Aberdeen/
/msc thesis//Discard_clean.csv", header=T) 
data.obs.rep <- read.csv("C:/Users/s04rw6/Aberdeen/ICES 
areas/data_final_obs_rep.csv",header=T)  
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grid <- readAsciiGrid("C:/Users/s04rw6/Aberdeen/ICES 
areas/bath_asc.txt")   # geographic depth 
################### 
data.obs.rep$Year=as.numeric(substring(data.obs.rep$Trip.ID, 
2, 5)) 
data.obs.rep$month2=as.numeric(substring(data.obs.rep$Haul.Sta
rt.Date.and.Time, 4, 5))  #month from hauls when possible in 
other case from landing date 
ind.m=which(is.na(data.obs.rep$month2)=="TRUE") 
data.obs.rep$month[ind.m]=data.obs.rep$Date.Landed...Month..nu
mber.[ind.m] 
ID.rep=data.frame(ID=data.obs.rep$Trip.ID,Haul=data.obs.rep$Ha
ul.Number) 
data.obs<-data.obs.rep[!duplicated(ID.rep),] 
######### calculating average lat and long base on start/end 
of trawl. When only one is available..keep it! 
av.lon=NULL 
av.lat=NULL 
l=dim(data.obs)[1] 
for(i in 1:l){  
av.lon[i]=mean(c(data.obs$Haul.Dec.Start.Long[i],data.obs$Haul
.Dec.End.Long[i]),na.rm=T) 
av.lat[i]=mean(c(data.obs$Haul.Dec.Start.Lat[i],data.obs$Haul.
Dec.End.Lat[i]),na.rm=T) 
} 
data.obs$ShootLon<-av.lon 
data.obs$ShootLat<-av.lat 
colnames(data.obs)[which(names(data.obs) == "Bottom.Depth")]<-
"depth2" 
colnames(data.obs)[which(names(data.obs) == 
"FRS.Gear.Code")]<-"gear" 
colnames(data.obs)[which(names(data.obs) == 
"Haul.Duration..min.")]<-"trawlmin" 
colnames(data.obs)[which(names(data.obs) == 
"Haul.Duration..min.")]<-"trawlmin" 
colnames(data.obs)[which(names(data.obs) == "Vessel.ID")]<-
"vessel" 
 
################### getting rid of data with no coordinates 
ind.na=which(data.obs$ShootLon=="NaN") 
data.obs=data.obs[-ind.na,]  
################### adding NA to depths <15 m 
ind.z=which(data.obs$depth2<15) 
data.obs$depth2[ind.z]<-NA 
data.obs$source <- "observer" 
data.fish$source <- "survey" 
data.fish$trawlmin <- 30 
data.fish$gear <- "MTD.sur" 
colnames(data.fish)[which(names(data.fish) == "freq")] <- 
"count" 
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m=max(data.obs$vessel,na.rm=T)  # giving the bigger number to 
the survey vessel 
data.fish$vessel <- m+1 
 
################### binding both databases 
obs.subset <- subset(data.obs, select= c("ShootLon", 
"ShootLat", "count", "trawlmin", "gear", "depth2", "month", 
"Year", "source","vessel")) 
fish.subset <- subset(data.fish, select= c("ShootLon", 
"ShootLat", "count", "trawlmin", "gear", "depth2", "month", 
"Year", "source","vessel")) 
data.bind <- rbind(obs.subset, fish.subset) 
 
data.bind$quarter=NA 
############# creating "quaters"..spliting data into two 
seasons 
ind.m1=which(data.bind$mont<=6) 
ind.m2=which(data.bind$mont>6) 
data.bind$quarter[ind.m1]<-1 
data.bind$quarter[ind.m2]<-2 
 
############ cuting up the "historical" polygon  
### leaving just north sea data  
lon.min=-4.7 
lon.max=7 
lat.min=48 
lat.max=61 
data.bind.r <- subset(data.bind, ShootLon >= lon.min) 
data.bind.r <- subset(data.bind.r, ShootLon <=lon.max) 
data.bind.r <- subset(data.bind.r, ShootLat>=lat.min) 
data.bind.r <- subset(data.bind.r, ShootLat<=lat.max) 
 
##### getting rid of datapoint inland 
ind.p<-which(data.bind.r$ShootLon < -1 & data.bind.r$ShootLat 
< 54)  
data.bind.r<-data.bind.r[-ind.p,] 
ind.p<-which(data.bind.r$ShootLon < -4 & data.bind.r$ShootLat 
< 58) 
data.bind.r<-data.bind.r[-ind.p,] 
ind.p<-which(data.bind.r$ShootLon < -2.1 & 
data.bind.r$ShootLat < 55.8) 
data.bind.r<-data.bind.r[-ind.p,] 
data.bind.r<-data.bind.r[-2627,] 
 
###################### cutting up just for Scotland 55 degrees 
data.bind.r <- subset(data.bind.r, ShootLat >= 55) 
 
####################### 
###### generating perimeter of the data 
Shoot.unique=unique(data.bind.r[c("ShootLon","ShootLat")]) 
Shoot.unique<-as.matrix(Shoot.unique) 
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alpha=0.4 #this control how "tight" is the perimeter around 
the data                      
a.chull <- ahull(Shoot.unique,alpha=alpha) 
 
per.lon=a.chull$arcs[,1] 
per.lat=a.chull$arcs[,2] 
 
#################################### 
#### to see perimiter around the datapoints 
plot(per.lon,per.lat,type="l") 
points(data.bind.r$ShootLon,data.bind.r$ShootLat,col="blue") 
plot(UK.shp,add=T) 
################ assign coors characters to perimetre data 
crds <- cbind(x=per.lon,y=per.lat) 
str(crds) 
Pl <- Polygon(crds) 
str(Pl) 
ID <- "a.chull" 
Pls <- Polygons(list(Pl), ID=ID) 
str(Pls) 
SPls <- SpatialPolygons(list(Pls)) 
str(SPls) 
df <- data.frame(value=1, row.names=ID) 
str(df) 
perim <- SpatialPolygonsDataFrame(SPls, df) 
str(perim) 
################ extractig coordinates from ICES areas 
ICES.poly.t<-ICES.shp@polygons 
s.data=155488 #size of ICES database 
med.lon=NULL 
med.lat=NULL 
for(i in 1:s.data){  
  med.lon[i]=ICES.poly.t[[i]]@labpt[1] 
  med.lat[i]=ICES.poly.t[[i]]@labpt[2] 
} 
med.points<-data.frame(lon=med.lon,lat=med.lat) 
 
####### perimetre and datapoints of each cuadrucula with the 
same coors structure 
med.pt=data.frame(x=med.points$lon,y=med.points$lat) 
coordinates(med.pt) = ~x+y 
med.pt2=SpatialPoints(med.pt) 
proj4string(med.pt2)<- CRS("+proj=longlat +datum=WGS84 
+no_defs +ellps=WGS84 +towgs84=0,0,0")  
proj4string(perim) <- proj4string(med.pt2) 
######## Test which points fall within polygon  
# takes arounds 10 min 
win <- gWithin(med.pt2, perim, byid=TRUE) 
ind.win=which(win=="TRUE") 
med.points.cut=med.points[ind.win,] 
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######## adding coors structure 
med.cut.coor=data.frame(x=med.points.cut$lon,y=med.points.cut$
lat) 
coordinates(med.cut.coor) = ~x+y 
med.cut.coor2=SpatialPoints(med.cut.coor) 
proj4string(med.cut.coor2)<- CRS("+proj=longlat +datum=WGS84 
+no_defs +ellps=WGS84 +towgs84=0,0,0")  
 
######## cutting up cuadricula structure for my data 
ind.cut<-over(med.cut.coor2,ICES.shp) 
ICES.poly.win<-ICES.shp@polygons[unique(ind.cut$ET_ID)+1] 
ICES.polygon.win<-SpatialPolygons(ICES.poly.win) 
########### a plot to check 
plot(ICES.polygon.win) 
save.image(file = "C:/Users/s04rw6/Aberdeen/ICES 
areas/workspace.RData") 
 
10.1.2 Appendix 1.2 Code for Modelling Including GAM and INLA Model Fitting. 
 
dev.off(dev.list()["RStudioGD"]) #to get rid of old plots 
rm(list=ls()) #removing objects 
################### 
require(alphahull) 
require(rgdal) 
require(raster)  
require(rgeos) 
require(mgcv) 
require(ggplot2) 
require(grid) 
require(sp) 
require(spdep) 
require(INLA) 
require(RColorBrewer) 
require(maptools) 
require(reshape) 
require(classInt) 
##new laptop 
load(file = "C:/respaldo/Aberdeen/ICES areas/m_year.RData") 
load(file = "C:/respaldo/Aberdeen/ICES 
areas/ICES.polygon.win2.RData") 
load(file = "C:/respaldo/Aberdeen/ICES 
areas/workspace_z.RData") 
grid <- readAsciiGrid("C:/respaldo/Aberdeen/ICES 
areas/bath_asc.txt") 
################### specifying a subset of data in years (as 
in msc thesis)  
data.sub <- subset(data.bind.r, Year > 2010 & Year < 2016) 
################## 
data.sub<-data.sub[,-11]  ## getting rid of "quarter" colunm  
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################### tranforming datapoints in geographic 
coordinates 
pt=data.frame(x=data.sub$ShootLon,y=data.sub$ShootLat) 
coordinates(pt) = ~x+y 
pt2=SpatialPoints(pt) 
proj4string(pt2)<- CRS("+proj=longlat +datum=WGS84 +no_defs 
+ellps=WGS84 +towgs84=0,0,0")  
 
####### 
 
################## assigning datapoints to polygons in the 
shape file 
ind<-over(pt2,ICES.shp) 
ID.po<-NULL 
#d<-dim(ind.cut)[1] 
d=2141  ### number of cuadricula in my cut area 
for(i in 1:d){  
  ID.po[i]=ICES.polygon.win2@polygons[[i]]@ID 
} 
ID.po=as.numeric(ID.po) 
 
ind.points=match(ind$ET_ID,ID.po) 
un=unique(ind.points) 
ID.no.point=ID.po[-un] 
ind.no.point=match(ID.no.point,ID.po) 
########## making database with NULL observations for empty 
cuadricula 
 
data.sub$ICES.areas <- ind$ET_ID  
data.sub$ICES.corr <- ind.points  
 
################## making "year2" with correlative years 
(allow to work with grouping data in INLA) 
data.sub$Year2=NA 
data.sub$YearMonth=NA 
ye=sort(unique(data.sub$Year)) 
month.id=seq(1,12,1) 
s=0 
for(i in 1:length(ye)){  
  ind=which(data.sub$Year==ye[i]) 
  data.sub$Year2[ind]=i 
  for(j in 1:length(month.id)){ 
  ind2=which(data.sub$Year==ye[i] & 
data.sub$month==month.id[j]) 
  data.sub$YearMonth[ind2]=j+s 
 
  } 
  s=12*i 
} 
################## making "vessels" a correlative number 
data.sub$vessel2=NA 
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ve=sort(unique(data.sub$vessel)) 
for(i in 1:length(ve)){  
  ind=which(data.sub$vessel==ve[i]) 
  data.sub$vessel2[ind]=i 
} 
###################### filling up each year-quarter with 
missing quadricula 
ID.po<-NULL 
#d<-dim(ind.cut)[1] 
ID2<-NULL 
for(j in 1:d){  
  ID.po[j]=ICES.polygon.win2@polygons[[j]]@ID 
 
} 
ID.po=as.numeric(ID.po) 
month.id=seq(1,12,1) 
ind.y=sort(unique(data.sub$Year2)) 
data.null<-c() 
for(i in 1:length(ind.y)){ 
  for(j in 1:length(month.id)){ 
    ind.year.month=which(data.sub$Year2==ind.y[i] & 
data.sub$month==month.id[j]) 
   
pt.m=data.frame(x=data.sub$ShootLon[ind.year.month],y=data.sub
$ShootLat[ind.year.month]) 
   coordinates(pt.m) = ~x+y 
   pt2.m=SpatialPoints(pt.m) 
   proj4string(pt2.m)<- CRS("+proj=longlat +datum=WGS84 
+no_defs +ellps=WGS84 +towgs84=0,0,0")  
   ind.m<-over(pt2.m,ICES.shp) 
   ind.points.m=match(ind.m$ET_ID,ID.po) 
   un.m=unique(ind.points.m) 
   ID.no=ID.po[-un.m] 
   ind.no.point=match(ID.no,ID.po) 
   month.no=rep(month.id[j],length(ID.no)) 
   year.no=rep(ind.y[i],length(ID.no))   
 
ID2=data.frame(ICES.areas=ID.no,Year2=year.no,month=month.no,I
CES.corr=ind.no.point) 
   data.null=rbind(data.null,ID2)    
    } 
} 
   s=0 
data.null$YearMonth=NA 
ye=sort(unique(data.null$Year2)) 
for(i in 1:length(ye)){  
    ind=which(data.null$Year2==ye[i]) 
  for(j in 1:length(month.id)){ 
  ind.m=which(data.null$Year2==ye[i] & 
data.null$month==month.id[j]) 
  data.null$YearMonth[ind.m]=j+s 
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  } 
  s=12*i 
} 
##############  adding average depth in each ICES cuadricula 
from raster 
r <- raster(grid) 
dep<- extract(r,ICES.polygon.win2) 
ID.depth=NULL 
for(i in 1:d){  
  ID.depth[i]=as.numeric(ICES.polygon.win2@polygons[[i]]@ID) 
} 
   
data.sub$depth.geo=NA 
di<-dim(data.sub)[1] 
for(i in 1:di){  
  pos=match(data.sub$ICES.areas[i],ID.depth) 
  data.sub$depth.geo[i]=mean(subset(dep[[pos]],dep[[pos]]<0)) 
# if any value is positive...takes only negative in each ices 
cuadricula 
} 
 
########### 
dm=dim(data.null)[1] 
data.null$depth.geo=NA 
 
for(i in 1:length(ID.depth)){  
   ind.nul=which(data.null$ICES.areas==ID.depth[i]) 
   
data.null$depth.geo[ind.nul]=mean(subset(dep[[i]],dep[[i]]<0)) 
} 
 
le.nul=dim(data.null)[1] 
lon.nul<-NULL 
lat.nul<-NULL 
for(j in 1:le.nul){ 
id<-data.null$ICES.corr[j] 
lon.nul[j]=ICES.polygon.win2@polygons[[id]]@labpt[1] 
lat.nul[j]=ICES.polygon.win2@polygons[[id]]@labpt[2] 
} 
data.null$ShootLon=lon.nul 
data.null$ShootLat=lat.nul 
data.null$count=rep(NA,le.nul) 
data.null$trawlmin=rep(120,le.nul)   
data.null$gear=rep(NA,le.nul) 
data.null$Year=rep(NA,le.nul)  
data.null$source=rep("nule",le.nul) 
data.null$vessel=rep(NA,le.nul) 
data.null$vessel2=rep(NA,le.nul) 
data.null$depth2=rep(NA,le.nul) 
############# 
####### binding positive and NULL observations 
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data.sub.bin=rbind(data.sub,data.null) 
 
############ binning depth.geo data in each 10 m (delta) for 
performing rw2 
min.dg=min(data.sub.bin$depth.geo,na.rm=T)-0.1  #to be sure to 
include the boundaries 
max.dg=max(data.sub.bin$depth.geo,na.rm=T)+0.1 
delta=10 
sq=seq(min.dg,max.dg,delta) 
data.sub.bin$depth.geo.bin=data.sub.bin$depth.geo 
for(i in 1:(length(sq)-1)){ 
  
ind.dg=which(data.sub.bin$depth.geo>=sq[i]&data.sub.bin$depth.
geo<sq[i+1]) 
  data.sub.bin$depth.geo.bin[ind.dg]=round((sq[i]+sq[i+1])/2) 
} 
############ also adding a max lim for fishing of 200 m,  
############ acording to the observe depth in loogbooks 
(depth2) 
ind.dep=which(data.sub.bin$depth.geo.bin< -200) 
data.sub.bin$depth.geo[ind.dep]=-200 
######################### 
data.sub.bin$depth.geo.bin=round(data.sub.bin$depth.geo.bin) # 
help precision 
################### PREGAM 
### jusy apply pregam to observed data 
ind.data<-which(data.sub.bin$source=="observer" | 
data.sub.bin$source=="survey") 
data.pregam<-data.sub.bin[ind.data,] 
 
#### to run the historical pregram 
 
pregam<-gam(count ~ 
ti(month,depth.geo.bin,bs=c("cc","tp"))+te(ShootLon,ShootLat,m
onth,bs="ts")+te(ShootLon,ShootLat,by=month,bs="re")+te(ShootL
on,ShootLat,bs="re")+ti(depth.geo.bin,bs="tp")+ti(month,bs="cc
")+gear+Year2+offset(log(trawlmin)), data= data.pregam, 
family= poisson) 
################ marginal for month/depth 
#marginal depth and space 
marg.data <- data.frame(depth.geo.bin= 
data.pregam$depth.geo.bin, 
                                    
ShootLon=data.pregam$ShootLon, 
                                    
ShootLat=data.pregam$ShootLat, 
                                    month=data.pregam$month, 
                                    Year2=3, 
                                    gear="MTD.sur", 
                                    trawlmin=120) 
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marg<- predict(pregam, newdata = marg.data, type = "response", 
se = TRUE) 
depth.month.marg.data <- data.frame(depth.geo.bin= 
data.pregam$depth.geo.bin, 
                          
ShootLon=mean(data.pregam$ShootLon,na.rm=TRUE), 
                            
ShootLat=mean(data.pregam$ShootLat,na.rm=TRUE), 
                              month=data.pregam$month, 
                              gear="MTD.sur", 
                              Year2=3,  
                              trawlmin=120) 
 
depth.marg<- predict(pregam, newdata = depth.month.marg.data, 
type = "response", se = TRUE) 
space.marg.data <- data.frame(depth.geo.bin= 
mean(data.pregam$depth.geo.bin,na.rm=TRUE), 
                                     
ShootLon=data.pregam$ShootLon, 
                                     
ShootLat=data.pregam$ShootLat, 
                                     month=data.pregam$month, 
                                     gear="MTD.sur", 
                                     Year2=3,  
                                     trawlmin=120) 
 
space.marg<- predict(pregam, newdata = space.marg.data, type = 
"response", se = TRUE) 
Year.marg.data <- data.frame(depth.geo.bin= 
mean(data.pregam$depth.geo.bin,na.rm=TRUE), 
                                  
ShootLon=mean(data.pregam$ShootLon,na.rm=TRUE), 
                                     
ShootLat=mean(data.pregam$ShootLat,na.rm=TRUE), 
                                     month=6, 
                                     gear="MTD.sur", 
                                     Year2=data.pregam$Year2,  
                                     trawlmin=120) 
 
Year.marg<- predict(pregam, newdata = Year.marg.data, type = 
"response", se = TRUE) 
data.sub.bin$pregam.depth<-depth.marg 
data.sub.bin$pregam.space<-space.marg 
data.sub.bin$pregam.depth<-NA 
data.sub.bin$pregam.space<-NA 
data.sub.bin$pregam.Year<-NA 
data.sub.bin$pregam.depth[ind.data]<-depth.marg$fit 
data.sub.bin$pregam.space[ind.data]<-space.marg$fit 
data.sub.bin$pregam.Year[ind.data]<-Year.marg$fit 
###################################  end of pregam 
###### Constructig a database for prediction in each Year  
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ind.y=sort(unique(data.sub.bin$Year2)) 
data.pred<-c() 
un=unique(data.sub.bin$ICES.corr) 
le.pred=length(un) 
lon.pred<-NULL 
lat.pred<-NULL 
for(g in 1:length(un)){ 
  id<-un[g] 
  lon.pred[g]=ICES.polygon.win2@polygons[[id]]@labpt[1] 
  lat.pred[g]=ICES.polygon.win2@polygons[[id]]@labpt[2] 
} 
 
 
s=0 
for(i in 1:length(ind.y)){ 
  for(j in 1:length(month.id)){ 
  pred.ICES.corr=rep(un,1) 
  pred.source=rep("prediction",le.pred) 
  pred.depth2=rep(NA,le.pred) 
  pred.Year=rep(NA,le.pred) 
  pred.trawlmin=rep(120,le.pred)  # predictions per two hour 
of trawling 
  pred.count=rep(NA,le.pred) 
  pred.depth.geo=NA 
  pred.ICES.areas=NA 
for(f in 1:length(un)){  
  ind.a=which(data.sub.bin$ICES.corr==un[f]) 
  pred.ICES.areas[f]=data.sub.bin$ICES.areas[ind.a[1]] 
  ind.d=match(pred.ICES.areas[f],ID.depth) 
  pred.depth.geo[f]=mean(subset(dep[[ind.d]],dep[[ind.d]]<0)) 
  } 
pred.gear=rep(NA,le.pred) 
pred.month=rep(j,le.pred) 
pred.Year2=rep(i,le.pred) 
pred.ShootLon=lon.pred 
pred.ShootLat=lat.pred 
pred.vessel=rep(NA,le.pred) 
pred.vessel2=rep(NA,le.pred) 
pred.pregam.depth=rep(NA,le.pred) 
pred.pregam.space=rep(NA,le.pred) 
pred.pregam.Year=rep(NA,le.pred) 
pred.YearMonth=rep(j+s,le.pred) 
data.pred_it=data.frame(ShootLon=pred.ShootLon, 
ShootLat=pred.ShootLat, count=pred.count, 
trawlmin=pred.trawlmin, gear=pred.gear, depth2=pred.depth2, 
month=pred.month, Year=pred.Year,Year2=pred.Year2, 
source=pred.source,ICES.areas=pred.ICES.areas,ICES.corr=pred.I
CES.corr,vessel=pred.vessel,YearMonth=pred.YearMonth, 
depth.geo=pred.depth.geo, 
vessel2=pred.vessel2,pregam.space=pred.pregam.space,pregam.dep
th=pred.pregam.depth,pregam.Year=pred.pregam.Year) 
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data.pred=rbind(data.pred,data.pred_it) 
  } 
s=12*i 
} 
data.pred$depth.geo.bin<-NA 
####### binding positive, NULL observations, and predictions 
data.sub.bin.p=rbind(data.sub.bin,data.pred) 
data.sub.bin.pred<-data.sub.bin.p 
############ binning depth.geo data in each 10 m (delta) for 
performing rw2 
min.dg=min(data.sub.bin.pred$depth.geo,na.rm=T)-0.1  #to be 
sure to include the boundaries 
max.dg=max(data.sub.bin.pred$depth.geo,na.rm=T)+0.1 
delta=10 
sq=seq(min.dg,max.dg,delta) 
data.sub.bin.pred$depth.geo.bin=data.sub.bin.pred$depth.geo 
for(i in 1:(length(sq)-1)){ 
  
ind.dg=which(data.sub.bin.pred$depth.geo>=sq[i]&data.sub.bin.p
red$depth.geo<sq[i+1]) 
  
data.sub.bin.pred$depth.geo.bin[ind.dg]=round((sq[i]+sq[i+1])/
2) 
} 
############ also adding a max lim for fishing of 200 m,  
############ acording to the observe depth in loogbooks 
(depth2) 
ind.dep=which(data.sub.bin.pred$depth.geo.bin< -200) 
data.sub.bin.pred$depth.geo.bin[ind.dep]=-200 
######################### 
data.sub.bin.pred$depth.geo.bin=round(data.sub.bin.pred$depth.
geo.bin) # help precision 
 
################### selecting and cutting up layers for 
prediction 
################### getting rid of all layers first 
ind.pred=which(data.sub.bin.pred$source=="prediction") 
 
data.pred2<-data.sub.bin.pred[ind.pred,] 
data.sub.bin.pred=data.sub.bin.pred[-ind.pred,] 
################## 
################## selecting only month 2 and 8 (more survey 
data)#### and a year in the middle 
ind.cut2<-which(data.pred2$month==2 | data.pred2$month==8) 
data.pred3<-data.pred2[ind.cut2,] 
ind.cut3<-which(data.pred2$Year2==4)   ###### taking 2014 for 
year round predictions 
data.pred4<-data.pred2[ind.cut3,]   #### when I also need a 
layer for 1 extra year 
data.pred2<-rbind(data.pred3,data.pred4)  
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############### cutting up the area 
 
lon.max=3 
lat.min=57 
lat.max=60 
 
data.pred.cut <- subset(data.pred2, ShootLon <= lon.max) 
data.pred.cut <- subset(data.pred.cut, ShootLat>=lat.min) 
data.pred.cut <- subset(data.pred.cut, ShootLat<=lat.max) 
data.pred.cut2 <- subset(data.pred2, ShootLon <= lon.max) 
data.pred.cut2 <- subset(data.pred.cut2, ShootLat>=lat.min) 
data.pred.cut2 <- subset(data.pred.cut2, ShootLat<=lat.max) 
###################### 
################## 
data.sub.bin.pred2=rbind(data.sub.bin.pred,data.pred.cut2)  # 
only months predictic layers 
 
ICES.nb <- poly2nb(ICES.polygon.win2) #neighbours structure  
 
################## plotting nb structure 
nb2INLA("LDN.graph", ICES.nb) 
LDN.adj <- paste(getwd(),"/LDN.graph",sep="") 
H <- inla.read.graph(filename="LDN.graph") 
image(inla.graph2matrix(H),xlab="",ylab="") 
 
################# some definitions 
data.sub.bin.pred2$ICES.corr1<-data.sub.bin.pred2$ICES.corr #a 
repetition needed for INLA 
data.sub.bin.pred2$ICES.corr2<-data.sub.bin.pred2$ICES.corr #a 
repetition needed for INLA 
data.sub.bin.pred2$ICES.corr3<-data.sub.bin.pred2$ICES.corr #a 
repetition needed for INLA 
data.sub.bin.pred2$quarter<-NA 
ind.q1=which(data.sub.bin.pred2$month<=6) 
ind.q2=which(data.sub.bin.pred2$month>=7) 
data.sub.bin.pred2$quarter[ind.q1]=1 
data.sub.bin.pred2$quarter[ind.q2]=2 
data.sub.bin.pred2$quarter2<-NA 
ind.q1=which(data.sub.bin.pred2$month<=3) 
ind.q2=which(data.sub.bin.pred2$month>=4 
&data.sub.bin.pred2$month<=6) 
ind.q3=which(data.sub.bin.pred2$month>=7 
&data.sub.bin.pred2$month<=9) 
ind.q4=which(data.sub.bin.pred2$month>=10) 
data.sub.bin.pred2$quarter2[ind.q1]=1 
data.sub.bin.pred2$quarter2[ind.q2]=2 
data.sub.bin.pred2$quarter2[ind.q3]=3 
data.sub.bin.pred2$quarter2[ind.q4]=4 
################## selecting the block 
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ind.block1<-which(data.sub.bin.pred2$YearMonth>36 & 
data.sub.bin.pred2$YearMonth<=48) 
data.sub.bin.pred.block1<-data.sub.bin.pred2[ind.block1,] 
data.sub.bin.pred.block1$count=round(data.sub.bin.pred.block1$
count) 
data.sub.bin.pred.block.p<-data.sub.bin.pred.block1 
save(data.sub.bin.pred.block.p, file = 
"C:/respaldo/Aberdeen/ICES 
areas/data.sub.bin.pred.block.p.RData") 
 
################  priors from block before 
 
 
########### fix effects  
name=model.1.res  # define the name of the model to use as 
prior 
fixed=name$summary.fixed 
fixed.mean=fixed$mean[2:dim(fixed)[1]] # taken all fix but 
intercept 
fixed.sd=fixed$sd[2:dim(fixed)[1]] 
fixed.prec=1/(fixed.sd)^2 # acording to the INLA book 
definition of precision (tau). 
fixed.names=name$names.fixed[2:dim(fixed)[1]] 
f<-paste(fixed.names,"=",fixed.mean,collapse=" , ") 
f2<-paste(fixed.names,"=",fixed.prec,collapse=" , ") 
f.mean<- eval(parse(text=paste('list(', f, ')')))  
f.prec<- eval(parse(text=paste('list(', f2, ')'))) 
control.f=list(mean=f.mean,prec=f.prec,expand.factor.strategy 
= "inla") 
 
############ priors for random effect 
############ 
rnd=name$summary.hyperpar 
rnd.mean=rnd$mean 
rnd.sd=rnd$sd 
rnd.prec=1/(rnd.sd)^2 
rownames(rnd) 
# [1] hyper for besag, [2] hyper for autocorr, [3] hyper for 
iid 
hyper.besag <-list(prec=list(prior="loggamma", 
params=c(rnd.mean[1], rnd.prec[1]))) 
hyper.autocorr <-c(rnd.mean[2],rnd.prec[2]) 
hyper.iid<-list(prec=list(prior="loggamma", c(rnd.mean[3], 
rnd.prec[3]))) 
 
model.1 <- count ~ pregam.depth+ pregam.space+ f(ICES.corr, 
model = "besag", graph = LDN.adj, hyper=hyper.besag, 
group=YearMonth, constr=T, 
control.group=list(model="ar1",hyper=hyper.autocorr))+month+Ye
ar2+gear+f(vessel2,hyper=hyper.iid)+offset(log(trawlmin)) 
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