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Executive Summary 

 

 The aim of this research project was to review the use of Population Viability 

Analysis (PVA) metrics in the context of assessing the effect of offshore 

renewable developments on seabirds and to test PVA metric sensitivity to 

mis-specification of input parameters.  The most useful metrics in this context 

are those that are least sensitive to such mis-specification, enabling more 

robust assessment of offshore renewable effects. 

 Recent work has tested PVA metric sensitivity using a simulation approach. 

To complement these findings, the objective in this project was to test metric 

sensitivity using real-world data.  This approach is useful where one wishes to 

understand a specific region where real data are available, or where one 

wishes to address generic questions with real data.  If the same metrics show 

low sensitivity in models of real world data as in simulation models, then this 

would provide re-assurance that these metrics are the most appropriate for 

use in assessments. 

 Five study species were selected: black-legged kittiwake Rissa tridactyla; 

common guillemot Uria aalge; razorbill Alca torda; herring gull Larus 

argentatus and European shag Phalacrocorax aristolelis.  Of these, the first 

four were considered in population modelling in the Forth/Tay region in a 

previous Marine Scotland Science project (Freeman et al. 2014).  Similar 

models have, in the interim, also been fitted for shags in this region so this 

species was also considered.  The SPAs considered in this report were 

Buchan Ness to Collieston Coast SPA, Fowlsheugh SPA, Forth Islands SPA 

and St Abb’s Head to Fastcastle SPA.  

 Data on abundance, survival and productivity were collated from a variety of 

sources.  Regular or sporadic counts were available from all sites, based on 

whole colony or plot counts.  Productivity was available from all four SPAs for 

kittiwakes, and for European shags at two SPAs, otherwise data on 

demographic rates was limited to the Isle of May in the Forth Islands SPA. 
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 All models were fitted using a Bayesian approach in the software 

R/WinBUGS.  Model fitting was in ‘state-space’ form, which allows for 

‘observation error’ and environmental stochasticity simultaneously within the 

same model.  Models forecasted the population size for each species at each 

SPA, for 25 years from 2016 to 2041.  Adult survival was set to decline by one 

of a range of specified rates equating to offshore renewable effects, namely 

0% (i.e. no change), 0.5%, 1%, 2% and 3%.  Annual productivity was set to 

decline by 0%, 1%, 2%, 3% and 5%.  

 Previous work has indicated that ratio PVA metrics are less sensitive than 

probabilistic PVA metrics.  Accordingly, we tested the sensitivity of six PVA 

metrics, comprising two ratio metrics (median of the ratio of impacted to un-

impacted annual growth rate; median of the ratio of impacted to un-impacted 

population size); two metrics related to the ratio metrics (median difference in 

impacted and un-impacted annual growth rates; median difference between 

impacted and un-impacted population size) and two probabilistic metrics 

(probability of a population decline exceeding 10%, 25% or 50%; centile for 

un-impacted population which matches the 50th centile for the impacted 

population). 

 Sensitivity of the six PVA metrics was assessed in relation to mis-specification 

of input parameters.  We considered adult mortality (the complement of 

survival, since survival is high in seabirds and % increases are limited by the 

constraint of lying below a survival rate of 1) and productivity to differ from 

those of the baseline by: -30%, -20%, -10%, 10%, 20% and 30%.  We then 

assessed sensitivities in relation to population status, combining data from all 

species/SPAs for which we achieved model convergence.  Finally, we 

assessed PVA sensitivities in relation to scenarios of change resulting from 

the renewables development (i.e. the effect size). 

 The state-space modelling approach proved extremely powerful in forecasting 

population sizes, in particular where censuses were regular.  Even in cases 

where censuses were sporadic, the models generally performed well, though 

for three species/SPA populations the models would not converge 

successfully. 

 The two ratio metrics were least sensitive to mis-specification in input 

parameters.  They performed well in populations of different status, and under 

different scenarios of change.  The two difference metrics were not readily 

interpretable, but proved useful when growth rates or population size 

estimates were small.  The probabilistic metrics were more sensitive to mis-

specification to input parameters than the ratio PVA metrics.  The ‘probability 

of a population decline’ metric has been widely used in assessments but 

proved highly sensitive to mis-specification.  The metric representing the 



3 
 

centile from the un-impacted population size equal to the 50th centile of the 

impacted population size at the end of the wind farm showed moderately low 

sensitivity to mis-specification of survival and productivity.  It performed 

considerably better than the other probabilistic metric with markedly lower 

sensitivity to mis-specification, population status and renewables effect size. 

However, it was more sensitive than ratio metrics, and in some cases showed 

unstable sensitivity which was less apparent in ratio PVA metrics. 

 We recommend that those undertaking assessments consider the relative 

performance of different metrics with respect to sensitivity to mis-specification 

of input parameters.  Of the two ratio and two probabilistic metrics, the ratio 

metric ‘median of the ratio of impacted to un-impacted annual growth rate’ 

was least sensitive, followed by the ratio metric ‘median of the ratio of 

impacted to un-impacted population size’ and then the probabilistic metric 

‘centile for un-impacted population which matches the 50th centile for the 

impacted population’.  If these are used in assessments in future, we 

recommend that interpretation should factor in their relative sensitivities. 

Furthermore, a priority for future research would be to analyse the 

probabilistic metric using simulations, to assess whether the same results are 

found as in this study.  The probabilistic PVA metric ‘probability of a 

population decline’ was much more sensitive than the other three and is not 

recommended for use in this context.  Finally, we recommend that the two 

PVA metrics related to the ratio metrics (median difference in impacted and 

un-impacted annual growth rates; median difference between impacted and 

un-impacted population size) are used since they are estimable when ratios 

are being calculated and are useful in some circumstances.  
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1. Introduction 

 

1.1 Policy Context 

 

The Scottish Government has set a target of 100% of Scottish demand for electricity 

to be met by renewable sources by 2020.  The Scottish Government has a duty to 

ensure that offshore renewable developments are achieved in a sustainable manner.  

Scottish Ministers have consented offshore renewable energy sites under Section 36 

of the Electricity Act 1989.  A licensing process was followed that included the 

examination of Environmental Statements (ES) which consider the potential impacts 

and mitigation strategies of the proposed developments.  

 

Offshore renewable developments have the potential to impact on seabird 

populations that are protected by the EU Birds Directive [2009/147/EC], notably from 

collisions with turbine blades and through displacement from important habitat 

(Drewitt & Langston 2006; Larsen & Guillemette 2007; Masden et al. 2010; Grecian 

et al. 2010, Langton et al. 2011, Scottish Government 2011).  Other factors of 

concern are barrier effects to the movement of migrating or commuting birds, 

disturbance during construction and operation, toxic and non-toxic contamination 

and negative effects of developments on the distribution and abundance of prey.  Set 

against these, positive effects may be apparent, in particular if developments result 

in downstream changes to the physical environment that increase biomass of lower 

tropic levels (Inger et al. 2009).  Further, they may act as Fish Aggregating Devices 

(FADs) creating foraging opportunities for seabirds (Inger et al. 2009), though 

attracting seabirds may increase their vulnerability to other effects such as collision 

and noise (Scottish Government 2011).  Species differ in the sensitivity to 

disturbance, with auks of intermediate vulnerability and gulls and terns of low 

vulnerability (Garthe & Hüppop 2004; Langston 2010; Furness et al. 2013).  These 

potential effects are predicted to be particularly important for breeding seabirds that, 

as central place foragers, are constrained to obtain food within a certain distance 

from the breeding colony (Daunt et al. 2002; Enstipp et al. 2006).  

 

To aid the future development of offshore renewables, Marine Scotland have 

developed draft Sectoral Marine Plans for offshore Wind, Wave and Tidal Energy 

(Scottish Government 2013b) that have involved identifying the available resources 

and key constraints at a national and regional level, then applying social, economic 

and environmental assessments to inform the development of plan options.  These 

plans have been subject to a Sustainability Appraisal and public consultation 

exercise (Scottish Government 2013e) and are underpinned by detailed technical 

assessments including a Strategic Environmental Assessment (SEA; Scottish 
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Government 2013d), Habitats Regulations Appraisal (HRA; Scottish Government 

2013a) and Socio-economic Assessment (Scottish Government 2013c). 

 

The above analyses have synthesised the potential sensitivities of internationally 

important seabird populations in Scotland and recognised areas of uncertainty 

associated with these effects.  Therefore, in order to evaluate potential interactions 

between offshore renewables and marine wildlife in future, Marine Scotland believes 

that further marine science is required to continue to reduce uncertainty and apply 

the appropriate level of precaution. 

 

Population Viability Analysis (PVA) provides a robust framework that uses 

demographic rates to forecast future population levels, either under baseline 

conditions or under scenarios of change resulting from, for example, an offshore 

development (Maclean et al. 2007; Freeman et al. 2014).  A sensitivity analysis of 

PVA metrics to variation in demographic parameters would enable regulators and 

their advisers to assess the utility of each of these metrics in determining whether a 

predicted effect is unacceptably large.  Demonstrating the validity of these metrics 

would also ensure that PVA outputs are presented and interpreted in the most 

suitable way.  The outcomes could then be fed back into designing future monitoring 

requirements.  Furthermore, the outputs could inform the establishment of thresholds 

of acceptable change by regulators, although such an approach has been heavily 

criticised (Green et al. 2016).  Finally, they could improve assessments of risk and 

uncertainty with respect to population viability in environmental assessments and 

help to ensure that the level of precaution applied is appropriate. 

 

1.2 Project Objectives 

 

An important component of consenting of proposed offshore renewable 

developments is an assessment of the population consequences on seabirds.  

Population Viability Analysis (PVA) provides a robust framework that uses assumed 

or estimated demographic rates (principally survival and productivity) in a 

mathematical model to forecast future population levels of a wild animal population, 

either under currently prevailing circumstances or as a consequence of some 

perturbation to the system (Maclean et al. 2007; Freeman et al. 2014).  Stochastic 

PVA models are run many times selecting from a distribution of input parameters, 

resulting in outputs representing the mean, confidence intervals and all quantiles 

including the 50% (median).  

 

The range of PVA metrics which have the potential to describe the magnitude of a 

predicted effect on a population include population size by some target date, change 
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in size or growth rate between pairs of consecutive years, trend in population size, 

counterfactual/ratio of population size or growth rate, probabilities of population 

decline to below a specific level or a specific percentage of the starting population 

size, excess probabilities of population decline to below a specific level or a specific 

percentage of the starting population size, population level predicted to be exceeded 

with predefined probability (e.g. ‘as likely as not’, Mastrandrea et al. 2010) and 

posterior probabilities (or quantiles derived from them) for any of the above.  

 

This PVA framework allows the sensitivity of these metrics to changes in 

demographic parameters, notably due to estimation error, to be estimated.  This is 

important as all demographic parameters are estimated with uncertainty, and 

population change and PVA metrics are disproportionately affected by changes in 

the magnitude of each.  Accordingly, the aim of this project is to review the range of 

metrics available in PVA analysis and evaluate the sensitivity of these metrics in the 

context of decision making frameworks. 

 

The report will first review the literature regarding the range of metrics available for 

use by PVA analysis in the context of renewable assessment frameworks of 

seabirds.  It will then examine the relative sensitivity of a subset of these metrics to 

mis-specification of input parameters (adult survival and productivity) using PVAs 

developed on protected seabird populations at SPAs in the Forth/Tay region.  It will 

also assess the impact of mis-specification in the context of population status and 

effect size of offshore renewable development.  Finally, the project will make 

recommendations on the usefulness and application of the range of metrics within an 

assessment framework, and make recommendations to inform future assessments 

that use PVA analysis based on the conclusions of the study. 
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2. Literature Review 

 

2.1 Introduction 

 

Population Viability Analysis (PVA) uses life-history or population growth rate data to 

parameterise a mathematical population model to estimate population size and 

extinction risk of a species into the future (Norton 1995; Beissinger & Westphal 1998; 

Boyce 2001).  Specifically, PVAs have been used for several purposes including 

predicting the future size of an animal population, estimating the probability of a 

population going extinct over time, evaluating management strategies most likely to 

maximise population persistence or exploring how different assumptions 

consequently alter the viability of small populations (see (Coulson et al. 2001)). 

PVAs have been widely used in conservation biology and wildlife management, 

aided by the development of intuitive, widely available and user-friendly software 

packages, particularly to forecast risks of extinction for species of conservation 

concern (Ludwig 1999).  PVAs are a valuable tool because they facilitate the 

predictive modelling of animal populations under alternative environmental, 

management or harvesting scenarios and hence can be used to evaluate the 

effectiveness or consequences of different management decisions.  Thus, PVAs can 

be considered to be a type of risk assessment of the long-term viability of animal 

populations. 

 

A wide range of models can be considered to be PVAs (Ralls et al. 2002).  However, 

in its most common form, PVA utilises life-history parameters (for example growth 

rates, juvenile and adult mortality, adult fecundity rates etc.) for individuals in a 

population projection matrix to estimate population size into the future (Boyce 1992). 

Models can either be deterministic (demographic rates such as survival and 

reproduction are constant or are determined in a predictable manner) or stochastic 

(vital rates vary unpredictably over time).  Stochastic PVA models, can include 

demographic stochasticity (e.g. variation between individuals that affects whether a 

bird survives a given year) and environmental stochasticity (environmental change 

that would affect all individuals in a group), and hence the variability in the 

parameters is important, not just the mean values (Maclean, Frederiksen & Rehfisch 

2007).  PVAs have been developed for a wide range of species from different taxa, 

including plants (Maschinski et al. 2006), invertebrates (for example, sea-urchins 

(Pfister & Bradbury 1996) and insects (Bauer et al. 2013)), amphibians (Pickett et al. 

2016), reptiles (Enneson & Litzgus 2009), fish (Sweka & Wainwright 2014), birds 

(Wootton & Bell 2014) and mammals (Pertoldi et al. 2013). Although difficult to 

assess due to the term “PVA” or “Population Viability Analysis” not commonly being 

included as a keyword, birds appear to be the taxonomic group where PVAs have 
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most commonly been applied.  A crude search of Web of Science including the 

search terms “PVA AND Population Viability Analysis” plus the group (e.g. 

“mammal”) returned 25 citations for plants; 15 for fish; three for reptiles; 38 for birds 

and 20 for mammals.  PVAs have been extensively used in conservation and 

management with studies focusing on a broad range of topics including: investigating 

risk of extinction and population viability in small populations (Grayson et al. 2014); 

assessing the impact of different harvesting levels (York et al. 2016), predicting 

population sizes after reintroductions and enhancements (Halsey et al. 2015), 

assessing impacts of threats such as habitat loss (Naveda-Rodriguez et al. 2016), 

climate change (Marrero-Gomez et al. 2007) and disease (Haydon, Laurenson & 

Sillero-Zubiri 2002), assessing effectiveness of alternative management strategies 

(Ferreras et al. 2001); establishing conservation status and strategies (Bevacqua et 

al. 2015); establishing the effectiveness of conservation strategies under a fixed 

budget (Duca et al. 2009); and evaluating which demographic parameters population 

growth is sensitive to in order to inform management (Mortensen & Reed 2016).  As 

a crude indication, a search in Web of Science found the most published references 

for the search term “PVA and management” (320 references), followed by “PVA and 

conservation” (247), “PVA and population size” (167), with few references for “PVA 

and renewable energy” (7) or “PVA and wind farm(s)” (2, both on terrestrial wind 

farms; but note that the majority of studies on PVAs and wind farms are undertaken 

as part of the planning process e.g. Habitats Regulation Assessments (in Scotland, 

the law in England and Wales calls them Assessments) and are not published in 

peer-reviewed journals but within so called “grey- literature”). 

 

The outputs of PVAs consist of a predicted population trajectory through time.  A 

suite of metrics have been used to predict the changes in the population of the focal 

species, both for conservation purposes and as a result of a particular threat or 

management scheme.  Note that the term “metric” is not widely used outside the 

sphere of PVAs for seabirds and wind farms, where it has broadly been defined 

(Cook & Robinson 2016a, 2016b) as any value or rule upon which a decision about 

whether or not a population level effect associated with the impacts of an offshore 

wind farm is deemed acceptable.  We consider the metric to be a value or unit of 

measurement, and not a rule, and hence cannot be used as an effective search 

term.  A review of the model outputs from general literature in the last five years 

found that many studies simply reported estimated population sizes or population 

growth rate for particular time periods (Lopez-Lopez, Sara & Di Vittorio 2012; 

Wootton & Bell 2014; Naveda-Rodriguez et al. 2016).  A commonly reported metric 

was that of quasi-extinction or extinction thresholds, whereby a probability is given 

for a population declining below a particular threshold (e.g. 10%) after a certain time 

(e.g. 10 years) or the predicted time to extinction (Blakesley et al. 2010; Alemayehu 
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2013; Hu, Jiang & Mallon 2013; Beissinger 2014; Robinson et al. 2016).  The 

difference in extinction probability under different scenarios was reported when 

comparing management regimes e.g. management Scenario 1 resulted in an X% 

higher extinction probability than Scenario 2 (Bazzano et al. 2014).  Susceptibility to 

quasi-extinction (SQE) has been used to assess whether or not a population is at 

risk of declining to a specified level (quasi-extinction threshold), a metric which 

supposedly integrates both parameter uncertainty and stochasticity.  This method 

uses parametric bootstrapping to determine 95% confidence limits of quasi-extinction 

and then the SQE is defined as the proportion of the bootstrap that indicates a high 

probability of quasi-extinction (set arbitrarily as >= 0.9 in this paper; Snover and 

Heppell (2009)). 

 

There are a number of sources of uncertainty that are incorporated within stochastic 

PVA models (Boyce 1992).  There are two main components of uncertainty in time 

series of demographic variables or population counts: observation and process 

uncertainty (also called observation and process error or variation).  Observation 

uncertainty (or sampling uncertainty) describes noise in the data that arises due to 

imprecise or biased empirical data collection methods, for example detection 

difficulties due to terrain, weather conditions or observer experience and human 

error.  Process uncertainty describes noise that is related to the real variation in 

the parameter and comprises the real drivers of population fluctuations that are of 

interest (Bakker et al. 2009; Ahrestani, Hebblewhite & Post 2013).  Methods for 

incorporating uncertainty are continuing to advance, including methods for 

separating out parameter uncertainty and process variation e.g. Heard et al. (2013). 

Therefore, the results of such PVAs are probabilistic, for example risks, probabilities 

or likelihoods of population decline or extinction.  Sensitivity analysis, which 

determines the amount of change in the model results in response to changes in 

model parameters, is an important component of PVAs (Saltelli & Annoni 2010; 

Aiello-Lammens & Akçakaya 2016).  Sensitivity analysis can be used to prioritise 

and inform empirical data collection by establishing the importance of parameters 

with imperfect knowledge and parameters where improved precision would enhance 

model predictions.  Sensitivity analysis also facilitates understanding and 

identification of life-history parameters that are highly influential on population size 

and future viability in order to inform and prioritise conservation or management 

strategies.  Sensitivity analysis is achieved by perturbing the life-history parameters 

either via a local (one at a time) or global sensitivity analysis (see Mccarthy, 

Burgman & Ferson (1995); Wisdom, Mills & Doak (2000); Cross & Beissinger (2001); 

Naujokaitis-Lewis et al. (2009); Aiello-Lammens & Akçakaya (2016) for details). 

Global sensitivity analysis is considered superior to local, because varying local 

analysis fails to account for the influence of interactions between parameters, but 
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has rarely been applied in part due to computational difficulties and difficulties in 

quantifying interactions between parameters (Naujokaitis-Lewis et al. (2009); Coutts 

and Yokomizo (2014); but see Aiello-Lammens & Akçakaya (2016)).  

 

Despite the wide application of PVAs to inform and make predictions including the 

impacts of management or developments, there have been a number of criticisms of 

their use and how well models can be used to inform management decisions, 

including how estimates of uncertainty are utilised (Coulson et al. 2001; Ellner et al. 

2002; Reed et al. 2002; McCarthy, Andelman & Possingham 2003; Green et al. 

2016).  The quality of the life-history data used to parameterise models may 

determine how effectively PVAs are able to predict population changes, and for 

model predictions will only be valid at predicting extinction if the distribution of life-

history parameters between individuals and years is stationary in the future (Coulson 

et al. 2001).  There is a need to determine and understand how accurately PVAs can 

predict population size change but the predictions from PVAs are rarely tested 

against empirical data in the future to establish how well models performed.  

Criticism has been levied about how the model results can be difficult to understand, 

assess and interpret by stakeholders (Knight et al. 2008; Pe'er et al. 2013).  Due to 

uncertainty and variability amongst the input parameters for the PVA models and 

hence uncertainty associated with the final metrics produced, decision makers may 

lack confidence in and may misinterpret model predictions (Addison et al. 2013; 

Green et al. 2016).  Thus, it is critically important that steps are made to solve these 

challenges where possible (Masden et al. 2015; Green et al. 2016), since PVAs 

remain one of the most widely used tools for evaluating the impacts of anthropogenic 

developments, wildlife management or conservation strategies on focal populations. 
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2.2 Seabird PVAs and Marine Renewable Developments 

 

One application of PVAs is as a tool to understand the likely impacts of offshore wind 

farms on seabird populations.  The development of offshore wind farms has the 

potential to be an important anthropogenic intervention into marine habitats.  The UK 

supports nationally and internationally important breeding and wintering populations 

of seabirds and the UK government has legal obligations to evaluate the effects such 

developments may have on such populations.  The development of offshore wind 

farms may negatively impact seabird populations by increased mortality associated 

with direct collisions with turbines, by displacement of birds from suitable foraging 

areas; and by impeding movements of commuting or migrating birds (Garthe & 

Huppop 2004; Drewitt & Langston 2006; Everaert & Stienen 2007; Masden et al. 

2009; Furness, Wade & Masden 2013; Searle et al. 2014; Cleasby et al. 2015; 

Vanermen et al. 2015; Busch & Garthe 2016).  In the UK, a wide number of reports 

have used PVAs to assess the impact of wind farm developments on seabird 

populations and to inform the consenting process for approval of these wind farm 

developments (see Table 1 for examples).  It should be noted that details of PVAs 

for evaluating the impacts of wind farms are largely available through so called “grey 

literature” (reports and assessments) rather than ISI published papers.  PVAs have 

aimed to either compare the predicted population trajectory into the future with the 

wind farm development to that without the development, or to quantify the risk that 

the development poses by establishing probability of future population declines.  

Both deterministic and stochastic PVA models have been used for evaluating the 

impacts of wind farms and it has been argued that deterministic models are a more 

“honest” approach where there is significant uncertainty around demographic 

parameters because the presented confidence limits from stochastic models imply 

an unjustified level of precision in the underlying data (WWT 2012).  However, 

stochastic models are more conservative (Lande, Engen & Sæther 2003) and 

deterministic models do not produce a distribution of results and hence cannot 

employ probabilistic metrics.  A number of different metrics from the PVAs, for 

example the increase in the probability of a population decreasing by a fixed amount 

over time, have been used to provide assessments of the impact of wind farms on 

seabird populations.  Metrics have been criticised for being sensitive to uncertainties 

both in the life-history parameters used to build the models and in the size of the 

impact of wind farms on the population (Masden et al. 2015; Green et al. 2016). 

Uncertainty in the demographic rates used to parameterise models can lead to 

uncertainty in whether the predicted magnitude of the impact (e.g. increased 

mortality or reduced productivity) will lead to an adverse effect on the focal 

population size (Masden et al. 2015).  Uncertainty in the size of the impact of the 

wind farms on the population arises due to lack of empirical data on collision risk, 
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displacement or barrier effects on seabird populations.  Thus, there is concern that 

the metrics may not enable accurate predictions and good understanding of the 

impacts of offshore wind farms on seabird populations (Cook & Robinson 2016a; 

Green et al. 2016).  This uncertainty has therefore led to a precautionary approach to 

assessments (see Thompson et al. (2013) for details). 

 

A broad range of metrics have been derived from PVA population models in order to 

assess the population level effects of wind farm development on seabird populations 

(Cook & Robinson 2016a).  Cook & Robinson (2016a, 2016b) identified 11 metrics 

that had been derived from population models as part of HRA undertaken for 

offshore wind farms that were within the planning process.  These metrics were 

summarised from reports from 27 proposed sites at which the population level 

impacts of offshore wind farms on seabirds had been considered during assessment: 

Aberdeen Offshore Wind Farm, Beatrice, Burbo Bank Extension, Docking Shoal, 

Dogger Bank Creyke Beck A, Dogger Bank Creyke Beck B, Dogger Bank Teesside 

A, Dogger Bank Teesside B, Dudgeon, East Anglia One, Fife Wind Energy Park, 

Galloper, Hornsea Project One, Inch Cape, London Array Phase II, MORL (MacColl, 

Stevenson, Telford), Navitus Bay, Neart na Gaoithe, Race Bank, Rampion, 

Seagreen Alpha, Seagreen Bravo, Triton Knoll 3, Walney I & Walney Extension.  

The metrics derived from PVAs were split into two broad categories: i) probabilistic 

approaches (e.g. the probability of the population declining); or ii) ratio approaches 

(e.g. the ratio of the population size in the presence and absence of the wind farm). 

Cook & Robinson (2017) builds on this work, but for a reduced set of metrics from 

the reports, focusing on two PVA metrics (declines in probability difference for both 

growth rate and population size, equivalent to Metrics 4 and 7 in Table 2; and 

counterfactual of impacted and un-impacted populations for both growth rate and 

population size, equivalent to Metrics 2 and 3 in Table 2) and one rule (Acceptable 

Biological Change) derived from a PVA metric (Metric 15 in Table 2). 

 

2.3 Review Aims 

 

This review builds on the recent report from Cook & Robinson (2016b), which 

reviewed 11 metrics derived from population models used as part of the HRA 

undertaken for assessing the impacts of offshore wind farms on seabird populations, 

by considering a further range of published reports that did not form part of HRAs 

(see Table 1).  
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The purpose of our review was to: 

 

1. Provide details of the metrics produced by PVAs; 

2. To summarise any evaluations of how sensitive the metrics were to variation 

in the input parameters in order to recommend which metrics would be useful 

to pursue further.  

 

In total we review 15 metrics, of which 11 were previously identified in the Cook & 

Robinson report (2016b).  The four additional metrics that we identified were the 

difference in population growth rate, the difference in population size, the odds ratio 

of a decline and the centile for un-impacted population which matches the 50th 

centile for the impacted population (see No’s.s 12-15 in Table 2).  It should be noted 

that for stochastic models comparing impacted and un-impacted scenarios, metrics 

are derived using a “matched runs” approach (WWT 2012; Green et al. 2016).  

Stochasticity is applied to the population, but the same survival and productivity rates 

are incorporated for both the impacted and un-impacted populations at each time 

step prior to any impact from an offshore wind farm being applied. 
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Table 1 
 
Additional reports reviewed for PVA modelling metrics which were recommended by the project steering group and were not included in the Cook & Robinson 
reviews (2016a and 2016b).  N.B. population growth rate is defined as being the mean rate of growth across the period of interest (ratio of the population in 
year i+1 to that in year i; also known as the population multiplication rate). 
 

Reference 
Species 
considered 
 

Metrics used Equivalent metric No. and description if already 
included in Cook & Robinson 2016b (Table 2 in this 
report). Metrics in bold are not included. 

 
Mackenzie, A. & Perrow, M.R. (2009) Population 
viability analysis of the north Norfolk Sandwich 
tern Sterna sandvicensis population. Report for 
Centrica Renewable Energy ltd and AMEC 
Power & Process. 
 
Mackenzie, A. & Perrow, M.R. (2011) Population 
viability analysis of the north Norfolk Sandwich 
tern Sterna sandvicensis population. Report for 
Centrica Renewable Energy ltd and AMEC 
Power & Process 
 
JNCC & NE (2012) Defining the level of 
additional mortality that the North Norfolk Coast 
SPA Sandwich tern population can sustain. 
JNCC & NE.  

 Sandwich 
tern 

 Probability of population decline: the 
probability of the simulated 
population falling below thresholds 
compared to the starting population 

 

 Change in probability of decline: the 
difference in probability of decline 
between impacted and un-impacted 
populations (also known as the 
Counterfactual of the probability of 
population decline; CPD) 

 No. 7: Probability of a 10, 25 or 50% population 
decline 

 
 
 

 No 8: Change in probability of a 10, 25 or 50% 
population decline 

 
 
 

 
Trinder, M. (2014) Flamborough and Filey Coast 
pSPA Seabird PVA Final Report: Appendix N to 
the response submitted for deadline V. Report 
for SMart Wind. 
 
 
 

 Gannet 

 Kittiwake 

 Guillemot 

 Razorbill 

 Puffin 

 Population growth rate 
 

 Predicted change in population 
growth rate i.e. the reduction in 
growth rate between un-impacted 
and impacted populations 

 
 

 Probability of population decline 
 
 

 Change in probability of population 
decline 

 
 

 No. 1: Population growth rate 
 

 Not included in Cook & Robinson but similar to No 
2: Ratio of median impacted to un-impacted growth 
rate  

 

 No 7: Probability of a 10, 25 or 50% population decline 
 

 No 8. Change in probability of a 10, 25 or 50% decline  
 
 

 No 7: Probability of a 10, 25 or 50% population decline 
(but considered in the final year) 
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Reference 
Species 
considered 
 

Metrics used Equivalent metric No. and description if already 
included in Cook & Robinson 2016b (Table 2 in this 
report). Metrics in bold are not included. 

 Probability the population size in the 
final year for the impacted population 
will be less than a range of 
percentages of the un-impacted 
population size 

 

 Change in the probability of the 
population size in the final year for 
the impacted population will be less 
than a range of percentages of the 
un-impacted population size 

 

 No. 8: Change in probability of a 10, 25 or 50% 
decline (but considered in the final year) 

Trinder, M. (2015) Flamborough and Filey Coast 
pSPA Seabird PVA Report: Appendix M to the 
response submitted for deadline IIA. Report for 
SMart Wind. 
 

 Gannet 

 Kittiwake 

 Guillemot 

 Razorbill 

 Puffin 

 Predicted change in population 
growth rate i.e. the reduction in 
growth rate between un-impacted 
and impacted populations 

 

 Ratio of the impacted to un-impacted 
population size (Counterfactual of 
population size) at 5 year intervals up 
to 25 years 

 

 Not included in Cook Robinson but similar to No 2: 
Ratio of median impacted to un-impacted growth rate  

 

 No. 3: Ratio of the impacted to un-impacted population 
size 

 

 
Inch Cape Offshore Limited (2011) Inch Cape 
Offshore Wind Farm Environmental Statement: 
Appendix 15B Population Viability Analysis. 
 

 Kittiwake 

 Guillemot 

 Razorbill 

 Puffin 

 Change in probability of a population 
decline 

 

 No. 8: Change in probability of a 10, 25 or 50% 
decline 

 
Freeman, S., Searle, K., Bogdanova, M., 
Wanless, S. & Daunt, F. (2014) Population 
dynamics of Forth and Tay breeding seabirds: 
review of available models and modelling of key 
breeding populations. Final Report to Marine 
Scotland Science. 
 

 Kittiwake 

 Guillemot 

 Razorbill 

 Puffin 

 Herring gull 

 Probabilities of population decline to 
threshold percentages (25, 50, 75 
and 100%) below the baseline in 
2015 

 Excess probabilities of population 
decline compared to that predicted 
by baseline in 2015 for threshold 
percentages (25, 50, 75 and 100%) 
i.e. probability of a decrease in the 
impacted population minus that for 
the un-impacted population 

 

 No. 7: Probability of a 10, 25 or 50% population 
decline 

 
 

 No 8: Change in probability of a 10, 25 or 50% 
population decline 
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Reference 
Species 
considered 
 

Metrics used Equivalent metric No. and description if already 
included in Cook & Robinson 2016b (Table 2 in this 
report). Metrics in bold are not included. 

Moray Offshore Renewables Ltd (2013) 
Environmental Statement: Ornithology 
population viability analysis outputs and review. 

 Gannet 

 Kittiwake 

 Guillemot 

 Razorbill 

 Puffin 

 Fulmar 

 Probabilities of the population 
dropping below threshold 
percentages (quasi-extinction) of the 
baseline population size during the 
lifespan of the project (25 years or 25 
years plus 10 year recovery) 

 

 Change in probabilities of the 
population dropping below threshold 
percentages (quasi-extinction) of the 
baseline population size during the 
lifespan of the project (25 years or 25 
years plus 10 year recovery) 

 No. 7: Probability of a 10, 25 or 50% population 
decline 

 
 
 
 

 No. 8: Change in probability of a 10, 25 or 50% 
population decline 
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Table 2 
 
Description of metrics used to assess population responses to impacts of offshore wind farms.  For each metric an indication is given of the scale over which 
the metric operates and a description of the metric.  This table is adapted from Table 1 in Cook & Robinson 2016b and includes an additional four metrics (two 
based on our additional review of the reports listed in Table 1 and two requested to be included by Marine Scotland Science; additional metrics are numbers 
12-15). 
 

No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

1  Neither No Population 
growth rate  
 

 Value of 1 indicates a stable population 

 <1 indicates a declining population 

 >1 indicates an increasing population  

Calculation of population growth rate (calculated as 
mean rate over the study period; Final population 
size/Initial population size)

1/Nyears
) in the presence of 

the wind farm enables evaluation of whether the 
population will remain stable, increase or decrease 
through the life time of the project.  
 

Yes 

2  Ratio Yes Ratio of median 
impacted to un-
impacted 
growth rate  
(counterfactual 
of population 
growth rate) 
 

 Scale from 0 – 1  

 Value of 1 indicates the impacted 
population growth rate is the same as 
the un-impacted growth rate (no 
population-level consequence)  

 Values close to 0 indicate a large 
proportional difference between the 
impacted and un-impacted population 
growth rates (a strong population-level 
consequence) 

Considering only the growth rate of a population (as in 
No. 1 above) in the presence of an offshore wind farm 
enables an assessment of whether the population will 
remain stable, increase or decrease over time, but it 
does not make it possible to quantify the impact of the 
wind farm on that growth rate. However, this is 
possible if the growth rate of the population in the 
presence of a wind farm is compared to that expected 
in the absence of a wind farm. This ratio is also known 
as the COUNTERFACTUAL OF POPULATION 
GROWTH RATE  

Yes 

3  Ratio Yes Ratio of 
impacted to un-
impacted 
population size 
(counterfactual 
of population 
size) 
 

 Scale from 0 – 1 

 Value of 1 indicates the impacted 
population size is the same as the un-
impacted size (no population-level 
consequence)  

 Values close to 0 indicate a large 
proportional difference between the 
impacted and un-impacted population 
size (a strong population-level 
consequence) 

 

PVA models can be used to estimate population size 
through time both with and without the offshore wind 
farm. Comparing the ratio of these two population 
sizes gives a statistic that can be used to assess the 
population level impact of the offshore wind farm. 
Cook and Robinson state that the ratio could be 
derived either from a simple deterministic model or 
taken from the mean or median values simulated using 
a more complex stochastic model. We advocate that 
the ratio should be obtained from the median of x 
simulations of matched pairs; or in a Bayesian context 
the median will come from the posterior distribution of 

 Yes 
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No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

the ratios. The ratio of population sizes could be 
estimated either at a fixed point in time, for example at 
the end of a project, or at a series of intervals 
throughout the life time of a project. This ratio is also 
known as the COUNTERFACTUAL OF 
POPULATION SIZE (CPS). For example,CPS25 = 
Predicted population size at 25 years (with wind farm)/ 
predicted population size at 25 years (no wind farm) 

4  Probabilistic No Probability that 
growth rate <1, 
0.95, 0.8  
 

 Scale from 0 – 1 

 0 indicates that none of the simulations 
from a stochastic model result in a 
growth rate <1 (decreasing population) 

  1 indicates that all of the simulations 
from a stochastic model result in a 
growth rate <1  

Calculated from a stochastic model based on the 
proportion of simulations where the population 
declines (has a growth rate <1). The probability of a 
population declining is typically assessed over the 
lifetime of the project, but other time scales could be 
selected. The metric could consider the probability of 
the growth rate being below other values (e.g. 0.95 or 
0.8) which could be selected with reference to the 
status of the population concerned. Referred to as the 
Decline Probability Difference (DPDλ) in Cook & 
Robinson (2017) 

Yes 

5  Probabilistic Yes Change in 
probability that 
growth rate <1, 
0.95, 0.8 (linked 
to No. 4) 
 

 Scale from 0 – 1 

 0 indicates that there is no likely change 
in the probability of the growth rate 
being <1 between impacted and un-
impacted populations (no population-
level consequence) 

 values approaching 1 indicate there is 
an almost certainly change in the 
probability of the growth rate being <1 
between the impacted and un-impacted 
populations (i.e. a population-level 
consequence) 

Quantifying the probability of a population decline in 
the presence of an offshore wind farm may not be 
meaningful if simulations show that the population may 
already be at risk of declining in the absence of a wind 
farm, for example if >50% of simulations have a 
growth rate <1. To assess the population level impact 
of a wind farm it is necessary in this case to determine 
how much greater the probability of a decline is in the 
presence of an offshore wind farm than in the absence 
of an offshore wind farm. This can be done either at a 
single fixed point in time, or at intervals throughout the 
life time of the project.  

Yes 

6  Probabilistic No Probability that 
population is 
below initial 
size at any 
point in time  

 Scale from 0 – 1 

 0 indicates that none of the simulations 
from a stochastic model result in a 
population below its initial size at any 
point in time 

 1 indicates that all of the simulations 

After an initial impact, environmental stochasticity and 
density dependence may mean a population is able to 
recover throughout the life time of a project. This 
recovery would mean that over 25 years the final 
population size may not be smaller than starting 
population size.  

Yes 
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No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

from a stochastic model result in a 
population below its initial size at any 
point in time 

7  Probabilistic No  Probability of a 
10, 25 or 50% 
population 
decline  

 Scale from 0 – 1 

 0 indicates that none of the simulations 
from a stochastic model show the 
impacted population declining by a 
given magnitude (no population-level 
consequence) 

 1 indicates that all simulations show the 
impacted population declining by at 
least the given magnitude 

 The probability thresholds are also 
known as quasi-extinction or pseudo-
extinction thresholds 

A metric to assess the population level impact of a 
development could be derived by estimating the 
proportion of simulations for a population in the 
presence of a wind farm in which a decline of a given 
magnitude was recorded.  
Referred to as the Decline Probability Difference 
(DPDn) in Cook & Robinson (2017) 
  
 

Yes 
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No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

8  Probabilistic Yes Change in 
probability of a 
10, 25 or 50% 
decline (Linked 
to No. 7; also 
known as 
Counterfactual 
of the 
probability of 
population 
decline) 
  
 

 Scale from 0 – 1 

 0 indicates that there is no likely change 
in the probability of the population 
decreasing by a given magnitude 
between the impacted and un-impacted 
populations (no population-level 
consequence) 

 Values approaching 1 indicate there is a 
large change in the probability of the 
population decreasing by a given 
magnitude between the impacted and 
un-impacted populations (a population-
level consequence) 

 

Seabird populations are already declining at many UK 
colonies (JNCC 2013). Hence, the presence of a wind 
farm may not substantially increase the probability of 
the population size at these colonies being <1, if all 
simulations from the baseline scenario already have a 
population size less than the starting population size. 
However, the presence of the wind farm may cause a 
further reduction in population size. It may, therefore, 
be more meaningful to consider the change in 
probability of population size decreasing by a given 
magnitude, for example a X% increase in the 
probability of a Y% decline.  
 
Also referred to as the Counterfactual of the probability 
of population decline (CPD), for example the CPD25,10 

is the difference in the probability of a decline from the 
starting population size of 10% occurring 25 years 
after the wind farm construction between impacted and 
un-impacted populations. CPD can be calculated 
relative to the change from the starting population after 
a set time, or relative to the median population. Risk to 
the population concerned based on the changes in 
probability can be assessed using IPCC based 
likelihoods (see Mastrandrea et al. 2010). Such 
likelihoods simply convert the probabilities of the 
population dropping below the starting population into 
more accessible language for stakeholders according 
to boundaries 

Yes 

9  Probabilistic Yes Probability of a 
population 
being a given 
magnitude 
below the 
median size 
predicted in the 

 Scale from 0 – 1 

 0 indicates that none of the simulations 
from a stochastic model show the 
impacted population size being a given 
magnitude below the un-impacted 
population size (no population-level 
consequence) 

The metric to assess the population level impacts of a 
wind farm may be derived by estimating a median size 
for a population in the absence of an offshore wind 
farm and calculating the proportion of simulations for a 
population in the presence of a wind farm which were 
either below this median population size, or a given 
magnitude below this median population size.  

Yes 
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No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

absence of an 
impact  

 1 indicates that all simulations show the 
impacted population is a given 
magnitude below the un-impacted 
population size (population level 
consequence) 

10  Probabilistic Yes Probability that 
impacted 
population 
growth rate is 
2.5, 5 or 10% 
less than un-
impacted 
growth rate  
 

 Scale from 0 – 1 

 0 indicates that none of the simulations 
from a stochastic model show the 
impacted population growth rate being a 
given magnitude below the un-impacted 
population growth rate (no population-
level consequence) 

 1 indicates that all simulations show the 
impacted population growth rate is a 
given magnitude below the un-impacted 
population growth rate (population level 
consequence)  

With growth rates simulated from stochastic models, it 
may be desirable to estimate a mean or median value 
for the un-impacted population and calculate the 
proportion of simulations in which the growth rate of 
the impacted population is lower, or a given 
percentage lower, than this value. This approach has 
the advantage of allowing a probabilistic forecast of 
the impact of the offshore wind farm on a population, 
e.g. there is a 50% chance that the wind farm will 
reduce the population growth rate by 10%.  

Yes 

11  Probabilistic Yes Overlap of 
Impacted and 
Un-impacted 
Populations  
 

 Scale from 0 – 1 

 0 indicates that none of the simulated 
population sizes after 25 years from the 
stochastic model of the impacted 
population overlap with the simulated 
population sizes after 25 years from the 
un-impacted population 

 1 indicates that all of the simulated 
population sizes after 25 years from the 
stochastic model of the impacted 
population overlap with the simulated 
population sizes after 25 years from the 
un-impacted population 

Using stochastic models, the population size at a fixed 
point in time (i.e. at the end of a project lifetime e.g. 25 
years) may be expressed as a distribution. In these 
circumstances, it may be desirable to compare the 
distributions of the impacted and un-impacted 
populations. Where there is greater overlap between 
the two populations, impacts may be deemed less 
significant.  

Yes 

12 Closely 

related to 

ratio 

approaches 

Yes Difference in 

population 

growth rate i.e. 

the reduction in 

growth rate 

between un-

 Similar to No. 2 (Ratio of median 
impacted to un-impacted growth rate) 
but  
absolute not ratio values (one growth 
rate subtracted from the other) 

 The magnitude of the value relates to 
the magnitude of the difference 

Considering only the growth rate of a population (as in 
No. 1) in the presence of an offshore wind farm 
enables an assessment of whether the population will 
remain stable, increase or decrease over time, but it 
does not make it possible to quantify the impact of the 
wind farm on that growth rate. However, as with No. 2, 
this is possible if the growth rate of the population in 

No; closely 
related to 
No. 2 
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No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

impacted and 

impacted 

populations 

 

between the two growth rates 
 

the presence of a wind farm is compared to that 
expected in the absence of a wind farm.  

13 Closely 
related to 
ratio 
approaches 

Yes Difference in 

population size 

i.e. the 

reduction in 

population size 

between un-

impacted and 

impacted 

populations 

 

 Similar to No. 3 (Ratio of impacted to 
un-impacted population size) but  
absolute not ratio values (one 
population size subtracted from the 
other) 

 The magnitude of the value relates to 
the magnitude of the difference 
between the two population sizes 

 

PVA models can be used to estimate population size 
through time both with and without the offshore wind 
farm. Comparing these two population sizes by looking 
at the difference between them enables assessment of 
the population level impact of the offshore wind farm. 
As with No 3, the metric of population sizes could be 
estimated either at a fixed point in time, for example at 
the end of a project, or at a series of intervals 
throughout the life time of a project. 

No; closely 
related to 
No. 3 

14 Probabilistic Yes Odds Ratio of a 
threshold 
population 
decline 
comparing 
impacted to un-
impacted 
populations 

 An odds ratio of 1 implies that the 
presence of the wind farm has no effect 
on the probability of an event (e.g. a 
threshold population decline) 

 An odds ratio >1 implies that the wind 
farm leads to an increase in the 
probability of the event 

Odds ratios are a way of quantifying the odds of an 
event happening and provide an additional way of 
reporting the impacts of a wind farm on seabird 
populations. However, we did not find any instances 
where odds ratios were used as metrics for PVAs 
associated with wind farms in the literature examined 
in Table 1. The odds ratio essentially provides a 
summary of the difference between the probabilities 
for impacts and un-impacted populations so is an 
alternative way of quantifying the difference between 
the raw probabilities. 
For example: 
 - If a decline of 50% in the population (N.B. the level 
of the decline is not actually relevant to the calculation 
of the odds ratio) has been estimated to have a 
probability of 0.2 in the absence of a wind farm, but 0.5 
when the wind farm is present 
- then the odds ratio for the effect of the wind farm is:  
(0.5 / (1 - 0.5)) / (0.2 / (1 - 0.2)) = 4 
- the wind farm has the effect of multiplying the odds of 
the event (a 50% decline) by four.  

No; closely 
related to 
No. 8 
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No. Ratio or 
probabilistic 
 

Can be 
used to 
distinguish 
wind farm 
effects? 

Metric Scale and meaning (N.B. the scale of 0-1 
generally only applies if the impact of 
the wind farm is negative relative to the 
un-impacted scenario) 

Description Included in 
Cook & 
Robinson 
2016b 
 

15 Probabilistic Yes Centile for un-
impacted 
population 
which matches 
the 50th centile 
for the 
impacted 
population 

 Related to No. 11  

 Values between 0 and 100 
 

This metric is the centile for the un-impacted 
population which matches the 50

th
 centile of the 

impacted population. The centile values are taken 
from the distributions of the impacted and un-
impacted populations. The metric from which 
Acceptable Biological Change (Marine Scotland 
2015) is derived. 

No; closely 
related to 
No. 11 
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2.4 Sensitivity of PVA Metrics 

 

The second aim of our review was to summarise any evaluations of how 

sensitive the metrics were to variation in the input parameters in order to 

recommend which metrics would be useful to pursue further.  Metrics have 

been criticised as being sensitive to uncertainties in the demographic parameters 

used in the modelling process and in the magnitude of the impact predicted on 

populations (Green et al. 2016).  In order to evaluate this, Cook & Robinson (2016b) 

conducted analyses to quantify how sensitive the conclusions drawn from each 

model were to uncertainty in the demographic parameters used in the population 

models, the structure of the population models used to derive the metrics and the 

magnitude of the impact considered.  Cook & Robinson (2017) built on this sensitivity 

analysis by comparing model sensitivity for the counterfactual metrics (No’s.s 2 and 

3 in Table 2) between models run using a matched runs approach and those without 

(i.e. where base demographic rates within a stochastic population model vary 

between un-impacted and impacted populations). 

 

Overall, Cook & Robinson evaluated the metrics according to whether the metric 

responses were clear (the metric shows a noticeable change in response to impacts 

of increasing magnitude) and consistent (the shape of the relationship between the 

metric and the magnitude of the impact was linear).  A clear response would make it 

easier to distinguish between population level changes associated with differing 

magnitudes of the impact.  Thus, if metrics are not clear then it may be difficult to 

distinguish impacts arising as a result of the wind farm from natural variation in the 

population.  The shape and consistency of the response are also important because 

if the response is consistent then it is easier to understand and predict the 

relationship between the metric and the population level impacts and to understand 

the consequences of under- or over-estimating the magnitude of impacts.  Curved 

relationships between metrics and the magnitude of the impact are more difficult to 

interpret than linear relationships because the effects on the population will depend 

on the magnitude of the impact and hence conclusions are more vulnerable to mis-

specification of model parameters.  Cook & Robinson concluded that none of the 11 

metrics they considered showed both a clear and consistent response to impacts of 

increasing magnitude, and that none of the probabilistic approaches gave responses 

that were clear or consistent.  Of the 11 metrics, population growth rate, ratio of 

impacted to un-impacted population growth rate and ratio of impacted to un-

impacted population size were the most promising (see Cook & Robinson 2016b; 

Cook & Robinson 2017).  Population growth rate and ratio of impacted to un-

impacted population growth rate were promising because of a consistent linear 

relationship with the magnitude of the impact.  However, due to overlap in the 
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confidence limits for these metrics and the range over which they operate, 

distinguishing population level effects with and without the wind farm would be 

difficult unless the magnitude of the impact was very large.  The ratio of impacted to 

un-impacted population size was promising because it was the only metric that 

showed a clear response to the range of impacts considered in the analysis.  

 

Cook & Robinson specifically tested sensitivity to the following: 

 

1. Population trend: whether the metric was sensitive to the population trend 

prior to wind farm construction increasing, decreasing or being stable. 

2. Mis-specification of the demographic parameters: whether the metrics are 

sensitive to changes in the demographic parameters (i.e. a large change in 

the metric arises from a small change in the demographic parameter; for: 

 

i. Adult survival; 

ii. Immature survival; 

iii. Chick survival; 

iv. Productivity. 

 

3. Density dependence: whether the metric is sensitive to inclusion of density 

dependence on productivity and breeding adult survival in the models. 

4. The form of density dependence: whether the metric is sensitive to the form 

of density dependence in the models i.e. how quickly the adult survival rate 

changes as the population approaches or moves away from the carrying 

capacity (rather than whether this is compensatory i.e. population growth rate 

will reduce with increasing density or depensatory i.e. population growth rates 

will reduce with decreasing density). 

5. Whether stochastic or deterministic: whether the metric is sensitive to the 

inclusion of stochasticity (i.e. is modelled from input parameters over a range 

of values rather than a fixed value). 

 

The most promising metrics for use in assessing the population level effects of wind 

farms on seabirds were considered to be the ratio of impacted to un-impacted 

population growth rate (No. 2 in Table 2) and the ratio of impacted to un-impacted 

population size (No. 3 in Table 2).  Cook & Robinson (2017) recommended that 

stochastic models using a matched run approach are used because this is likely to 

reflect the most precautionary approach.  The median values of the decision criteria 

predicted for the counterfactual metrics (Metrics 2 and 3) were greater when a 

matched run approach was used than when models were run without (see Cook & 

Robinson 2017).  See Table 3 for a full summary of sensitivity of all metrics to the 
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five criteria listed above and a summary of how clear and consistent the metrics 

were.  Table 4 summarises the main strengths and weaknesses of each metric and 

how the metric should be used and interpreted if being used to assess the impacts of 

wind farms.  
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Table 3 
 
Sensitivity of metrics used to determine the impacts of offshore wind farms on seabird populations to variation in the input parameters (adapted from Table 5 
in Cook & Robinson (2016b)). Shading indicates how well each metric performs: light grey indicates good, dark grey moderate and black poor performance. 
The two main criteria (highlighted with a thick black line) are whether there was a clear and consistent relationship between the magnitude of the effect and 
the metric. N.B. probabilistic metrics cannot be calculated from deterministic models, so the comparison between stochastic and deterministic models is not 
applicable. No’s.12-14 from Table 2 were not included as these were not included in the sensitivity analysis from Cook & Robinson (2016b). 
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1  Population growth rate            

2  Ratio of median impacted to un-impacted growth 
rate 

          

3  Ratio of impacted to un-impacted population size 
after 25 years 

          

4  Probability that growth rate <1           

5  Change in probability that growth rate <1            

6  Probability that population is below initial size at 
any point in time  

          

7  Probability of a 25% population decline            

8  Change in probability of a 25% decline            

9  Probability of a population being 50% below un-
impacted population  

          

10  Probability that impacted population growth rate 
is 2.5% less than un-impacted growth rate  

          

11  Overlap of Impacted and Un-impacted 
Populations  
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Table 4 
 
Overview of the strengths and weaknesses of the different metrics and information on how the metric should be used to assess the impacts of wind farms. 
Table adapted from Table 6 in Cook & Robinson (2016b) with the addition of numbers 12 and 13 which were not included in the sensitivity analysis from Cook 
& Robinson (2016b). We have not included metrics 14 or 15 since sensitivity of these metrics to input parameter specification has not been assessed, so it is 
not possible to synthesise their strengths and weaknesses. 

 
No
. 

Metric Strengths  
 

 

Weaknesses 
 

 

How to use and interpret the metrics 
 

 
 

1  Population 
growth rate  

 Easy to interpret 

 Consistent relationship between metric 
and magnitude of impact: easier to make 
predictions about likely impacts 

 Relatively insensitive to misspecification 
of the input parameters 

 On its own can’t be used to assess wind 
farm impacts due to lack of comparison 
with un-impacted population 

 Variability around the estimates mean it 
can be difficult to distinguish between 
variation in the baseline population growth 
rate and the impacts from the wind farm 

 

 Not a meaningful metric on its own- need 
to compare the population growth rate of 
the un-impacted population with that of 
the impacted population in order to 
understand then population level effect 
associated with a wind farm 

 Lack of a significant difference between 
impacted and un-impacted populations 
does not necessarily mean that there 
would be no population level 
consequences of the wind farm (due to 
overlapping confidence intervals) 

2  Ratio of median 
impacted to un-
impacted growth 
rate 

 Consistent relationship between metric 
and magnitude of impact: easier to make 
predictions about likely impacts 

 Insensitive to misspecification of the input 
parameters and relatively insensitive to 
uncertainty in parameter estimates 

 Insensitive to population trend: metric 
reflects impact of wind farm and not 
population status 

 

 Metric varies over a limited range, with the 
overlapping confidence limits this makes it 
hard to determine likely population level 
effects from different magnitudes of effect 

 Hard to assess effects of the wind farm in 
a population context due to this limited 
range 

 

 Metric can be used regardless of 
population status or trend 

 Metric should be presented as a median 
value with 95% confidence limits 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 

 Models should be run with a matched run 
approach 

 

3  Ratio of 
impacted to un-
impacted 
population size 

 Easy to interpret in context of a population 
effect 

 Clear relationship between metric and 
magnitude of impact: easier to make 

 Sensitive to population declines 

 More sensitive to misspecification of the 
demographic parameters than population 
growth rate or ratio of impacted to un-

 Metric can be used for stable or 
increasing populations on its own 

 May be useful context for the ratio of 
impacted to un-impacted population 
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No
. 

Metric Strengths  
 

 

Weaknesses 
 

 

How to use and interpret the metrics 
 

 
 

after 25 years predictions about likely impacts 

 Relatively insensitive to uncertainty in the 
demographic parameters 

impacted population growth rate 
 

growth rate regardless of trend 

 Metric should be presented as a median 
value with 95% confidence limits 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 

 Models should be run with a matched run 
approach 

 

4  Probability that 
growth rate <1 

 Easy to understand, intuitive 
 

 On its own can’t be used to assess wind 
farm impacts due to lack of comparison 
with un-impacted population 

 Sensitive to misspecification of adult 
survival rate 

 Sensitive to population trends: if 
population is stable/declining then metric 
only varies over limited range and so it is 
difficult to identify population level effects 
associated with different impacts 

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 

 Not a meaningful metric on its own- need 
to compare the population growth rate of 
the un-impacted population with that of 
the impacted population in order to 
understand then population level effect 
associated with a wind farm 

 Can only be used when the population 
was increasing prior to the wind farm 
construction 

 Requires robust measures of site-specific 
adult survival 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 

 
 

5  Change in 
probability that 
growth rate <1  

 Easy to understand, intuitive: metric 
quantifies the change in probability of a 
population declining as a result of a wind 
farm 

 

 Sensitive to population trend 

 Sensitive to misspecification of 
demographic parameters 

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 

 Should not be used when the populations 
were declining prior to wind farm 
construction where the change in 
probability of growth rate is already close 
to 1 

 Requires robust, site specific data on 
demographic parameters 
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No
. 

Metric Strengths  
 

 

Weaknesses 
 

 

How to use and interpret the metrics 
 

 
 

conditions in the future 
 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 

6  Probability that 
population is 
below initial size 
at any point in 
time  

 Accounts for the fact that populations may 
recover over the lifetime of the wind farm 

 

 On its own can’t be used to assess wind 
farm impacts due to lack of comparison 
with un-impacted population 

 Sensitive to population trends prior to 
wind farm construction 

 Sensitive to misspecification of the 
demographic parameters 

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 Not a meaningful metric on its own - need 
to compare the population growth rate of 
the un-impacted population with that of 
the impacted population in order to 
understand then population level effect 
associated with a wind farm 

 Can only be used when the population 
was increasing prior to the wind farm 
construction 

 Requires robust measures of site-specific 
adult survival 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 

7  Probability of a 
25% population 
decline  

 Easy to understand 

 Can be related to established 
conservation assessments (e.g. (Eaton et 
al. 2015) 

 

 On its own can’t be used to assess wind 
farm impacts due to lack of comparison 
with un-impacted population 

 Sensitive to population trends prior to 
wind farm construction 

 Sensitive to misspecification of the 
demographic parameters  

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 Not a meaningful metric on its own - need 
to compare the population growth rate of 
the un-impacted population with that of 
the impacted population in order to 
understand then population level effect 
associated with a wind farm 

 Can only be used when the population 
was increasing prior to the wind farm 
construction 

 Requires robust measures of site-specific 
adult survival 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 
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No
. 

Metric Strengths  
 

 

Weaknesses 
 

 

How to use and interpret the metrics 
 

 
 

8  Change in 
probability of a 
25% decline  

 Easy to understand, intuitive: metric 
quantifies the change in probability of a 
population declining by 25% as a result of 
a wind farm 

 

 Sensitive to population trends prior to 
wind farm construction 

 Sensitive to misspecification of the 
demographic parameters 

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 Should not be used when the populations 
were declining prior to wind farm 
construction where the change in 
probability of growth rate is already close 
to 1 

 Requires robust, site specific data on 
demographic parameters 

 

9  Probability of a 
population being 
25% below un-
impacted 
population  

 Easy to understand, intuitive comparison 
of impacted and un-impacted populations 

 Can be related to established 
conservation assessments (e.g. (Eaton et 
al. 2015) 

 Some sensitivity to population trends prior 
to wind farm construction 

 Sensitive to misspecification of the 
demographic parameters 

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 

 The 25% threshold is subjective and may 
not be appropriate. Consideration needs 
to be given to whether to whether 
alternative thresholds may be more 
appropriate considering the status and 
importance of the focal population 

 Requires robust, site specific data on 
demographic parameters 

 Sensitivity to the form and inclusion of 
density dependence means that models 
with density dependence should only be 
used where there is robust evidence for it 
occurring within the population 

10  Probability that 
impacted 
population 
growth rate is 
2.5% less than 
un-impacted 
growth rate  

 Relates the impacted population growth 
rate to that of the un-impacted population 

 

 Difficult to understand in a population 
context 

 May be statistically difficult to detect a 
2.5% difference in growth rate. Could use 
higher levels of change but more severe 
impacts would be required to detect them 

 Sensitive to population trends prior to 
wind farm construction 

 Sensitive to misspecification of the 
demographic parameters 

 True variation in parameters and that 
based upon observation error are usually 

 Should not be used when the populations 
were declining prior to wind farm 
construction where the change in 
probability of growth rate is already close 
to 1 

 Requires robust, site specific data on 
demographic parameters 

 Sensitivity to the form and inclusion of 
density dependence means that models 
with density dependence should only be 
used where there is robust evidence for it 
occurring within the population 
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No
. 

Metric Strengths  
 

 

Weaknesses 
 

 

How to use and interpret the metrics 
 

 
 

not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 

11  Overlap of 
Impacted and 
Un-impacted 
Populations  

 Straightforward comparison that looks at 
how similar the model outputs are for 
impacted and un-impacted populations 

 

 Sensitive to population trends prior to 
wind farm construction 

 Sensitive to misspecification of the 
demographic parameters 

 Sensitive to estimates of uncertainty 
surrounding the demographic parameters 

 Value can depend on the number of 
simulations used in the modelling to 
obtain the metric 

 True variation in parameters and that 
based upon observation error are usually 
not distinguished 

  Measures are sensitive to any change in 
conditions in the future 

 Sensitive to population trends means the 
metric should only be used where there is 
good understanding of the status of the 
focal population 

 Requires robust, site specific data on 
demographic parameters and the 
uncertainty surrounding them 

 Sensitivity to the form and inclusion of 
density dependence means that models 
with density dependence should only be 
used where there is robust evidence for it 
occurring within the population 

 Needs careful analysis to ensure enough 
simulations are used in the models 

 

12 Difference in 

population 

growth rate i.e. 

the reduction in 

growth rate 

between un-

impacted and 

impacted 

populations 

 

  consistent relationship between metric 
and magnitude of impact: easier to make 
predictions about likely impacts 

 Insensitive to misspecification of the input 
parameters and relatively insensitive to 
uncertainty in parameter estimates 

 Insensitive to population trend: metric 
reflects impact of wind farm and not 
population status 

 

 Metric varies over a limited range, with the 
overlapping confidence limits this makes it 
hard to determine likely population level 
effects from different magnitudes of effect 

 Hard to assess effects of the wind farm in 
a population context due to this limited 
range 

 Provides absolute values of difference 
between population growth rate rather 
than ratios and may need to be 
interpreted also in the context of No. 2 

 Metric can be used regardless of 
population status or trend 

 Metric should be presented as a median 
value with 95% confidence limits 

 Thresholds for determining a wind farm 
impact are subjective but could be set in 
reference to the status or trend of the 
population 

13 Difference in 
population size 
i.e. the reduction 
in size between 
un-impacted and 

 consistent relationship between metric 
and magnitude of impact: easier to make 
predictions about likely impacts 

 Insensitive to misspecification of the input 
parameters and relatively insensitive to 

 Provides absolute values of difference 
between populations rather than ratios 
and may need to be interpreted also in the 
context of No. 3 

 Metric can be used regardless of 
population status or trend 

 Metric should be presented as a median 
value with 95% confidence limits 

 Thresholds for determining a wind farm 
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No
. 

Metric Strengths  
 

 

Weaknesses 
 

 

How to use and interpret the metrics 
 

 
 

impacted 
populations 

uncertainty in parameter estimates 

 Insensitive to population trend: metric 
reflects impact of wind farm and not 
population status 

 

impact are subjective but could be set in 
reference to the status or trend of the 
population 
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2.5 Criticisms of PVA Metrics in Assessing Wind Farm Impacts 

 

A number of criticisms have been levied against using the metrics derived from 

PVAs to assess the impact of wind farms (Cook & Robinson 2016a; Green et al. 

2016).  The main criticisms (some of which e.g. No. 1 are equally applicable to 

broader modelling contexts) were as follows: 

 

1. Lack of empirical data to provide robust estimates and associated confidence 

limits of collision, barrier and displacement effects on seabirds. 

2. Due to this lack of robust estimates of impact levels, probabilistic methods for 

assessing the risk of population impacts from wind farms are not scientifically 

robust or defensible - this includes metrics from PVAs that estimate e.g. the 

difference in probability of a decline between impacted and un-impacted 

populations. 

3. Thresholds are subjective and it should not be claimed that these have been 

set based on scientific evidence.  

 

Green et al. 2016 makes a number of recommendations for providing a scientifically 

robust and defensible method of assessing population-level impacts of wind farms 

on seabirds.  In the context of PVA modelling the ratio of the expected population 

size with the wind farm to that without it (No. 3 in Table 2; also termed the so-called 

Counterfactual of Population size (CPS)) is recommended as a robust metric 

because this metric is relatively insensitive to uncertainties about demographic rates 

because they apply to both impacted and un-impacted scenarios.  Cook & Robinson 

(2016b) also advocate the use of this metric, which in conjunction with the ratio of 

population growth rate (No. 2 in Table 2), is considered to score well in the 

assessments of sensitivity in Table 3.  However, it should be noted that the ratio of 

impacted to un-impacted population size was sensitive to incorporation and the form 

of density dependence (see Table 3).  Uncertainty can be incorporated, as in Cook & 

Robinson 2016b, if metrics are derived from a stochastic model or across a range of 

impact levels.  Bayesian approaches, such as those utilised by Freeman et al. (2014) 

and a potential method for conducting Global Sensitivity Analysis developed by 

Aiello-Lammens & Akçakaya (2016) show promise in being able to separate out the 

uncertainty associated with input parameter values used in the modelling with that 

from scenarios of impact on a population (for example different levels of collision 

mortality or displacement risk), and thus have potential to help address the criticisms 

levied by Green et al. (2016).  It has been highlighted that the strength of PVAs lies 

not in predicting absolute values of viability or costs of management but rather in 

evaluating the relative effects of different management scenarios (Perkins, Vickery & 

Shriver 2008).  Green et al. (2016) is highly critical of interpreting effects based on 
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arbitrary boundaries, which includes probabilistic approaches including probabilities 

and changes in probabilities of population declines below quasi-extinction thresholds 

(No. 7 and No. 8 in Table 2), and interpretation of such boundaries advocated for 

species conservation using IPCC based approaches detailed in Mastrandrea et al. 

(2011) where, for example, an effect is considered to be ‘moderate‐high’ if there is a 

> 5 % increase in the likelihood of a 20 % population reduction.  

 

2.5.1 Density Dependence 

 

Green et al. (2016) also recommends that PVAs should be constructed using 

density-independent matrix models because such models would be more 

precautionary in their assessments of population impacts than models including 

density dependence (as compensatory density dependence, widely assumed to be 

the most common form, would tend to reduce the impact on population size). 

However, density-dependent processes may be depensatory, thus slowing the rate 

of population growth at lower population densities rather than at high densities. 

Establishing whether compensatory or depensatory density-dependent processes 

are occurring for species that are the focus of PVAs for wind farms is important: if 

depensatory processes are operating and are ignored in PVAs then a population 

decline arising from a wind farm could have larger consequences on the population 

than are predicted by the models, accelerating population decline and delaying 

population recovery.  Recent work has identified depensation occurring due to 

increased anti-predator vigilance or colonial defence decreasing rates of productivity 

in smaller populations in eight species of seabird and seaduck, including species that 

have been the focus of PVAs for wind farms (Arctic skua, kittiwake, black-headed 

gull, sandwich tern, common tern, guillemot, puffin and herring gull; Horswill & 

Robinson 2015; Horswill et al. 2016).  Indeed, depensation was reported almost 

twice as often as compensation as a mechanism regulating productivity rates and 

the authors highlight that this positive feedback mechanism on population size has 

the potential to be highly destabilising.  However, density-dependent effects can vary 

significantly between colonies in relation to local conditions.  Cook & Robinson 

(2016b) concluded from their sensitivity analyses that density dependent processes 

operating on the population would mitigate any impacts arising from the wind farm 

and hence that assuming no density dependence is present is likely to be the most 

precautionary approach unless depensatory density dependence is known to be 

operating.  Furthermore, Cook & Robinson (2016a) recommend that density-

dependence could be incorporated within models where careful consideration has 

deemed this appropriate, but that density independent models are likely to represent 

a more precautionary approach in many cases. 
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2.5.2 Consideration of the Time-Span used to Assess Impacts 

 

Consideration needs to be given to the time-span over which metrics are used to 

determine whether the wind farm is likely to have an impact on seabird populations, 

for example whether the assessment is made at time increments from the 

construction period of the wind farm or at the end of the wind farm operating period 

e.g. 25 years.  The time period selected needs to consider that there will be 

increasing uncertainty for both impacted and un-impacted scenarios with 

extrapolation in to the future and hence increased risk of false conclusions on the 

predicted magnitude of population level effects, but conversely short time windows 

do not reflect the duration of the lifespan of the wind farm licence (typically 25 years). 

 

2.6 Knowledge Gaps 

 

Cook & Robinson (2016b) adopted a conventional PVA approach whereby they 

assumed values for demographic parameters (specifically survival, varying between 

ages, and productivity) and projected simulated population predictions forward in 

time from a specified starting point (typically at an ‘equilibrium’ age-structure).  No 

data were directly used, so no models were fitted and the results could be assumed 

valid for any species with demography approximately similar to that adopted in the 

simulations.  With such an approach, since values appropriate for a given species 

will often be unknown with accuracy, a range of values tend to be considered, and 

this is the approach the BTO adopted.  The advantage of this approach is that since 

no data fitting is required, there is a considerable reduction in computational 

demands.  The second advantage is that it is possible to model a range of seabird 

life history strategies.  As such, one can construct an analysis that is potentially 

relevant to all species and regions.  However, this approach is less desirable where 

one wishes to understand a specific region where real data are available, or where 

one wishes to address generic questions with real data.  One example of the latter is 

the need for a generic solution to the common situation where there are non-local 

empirical data that are relevant to the focal colony which itself lacks data.  Another 

feature of these models is that the confidence intervals can be unrealistically narrow. 

A further consideration is that although the Cook & Robinson (2016b) sensitivity 

analysis undertook a comprehensive assessment of metric sensitivity using 

simulation approaches, a key knowledge gap is that metric sensitivity has not been 

comprehensively examined using real data.  A project that focussed on this would be 

complementary to the work undertaken by the BTO.  If the same metrics show low 

sensitivity in models of real world data as in simulation models, then this would 

provide re-assurance that these metrics are the most promising.  Furthermore, such 

an approach would enable generic questions to be addressed with real data.  One 



37 
 

example which is very common with UK seabird populations is where data are 

absent from the focal colony but available from an adjacent colony, thereby offering 

a natural, informative prior.  We would recommend that such approaches are 

undertaken so that sensitivity of metrics can be tested using real-world data. 

 

2.7 Recommendations from Literature Review 

 

 The two metrics that have been recommended for use in establishing the 

impact of a wind farm on seabird populations are the Ratio of median 

impacted to un-impacted growth rate and the ratio of impacted to un-

impacted population size (also known as counterfactual of population 

size).  

 The two metrics of the difference in population growth rate between 

impacted and un-impacted populations and the difference in population 

size should also be considered as these may be more useful if the growth 

rates or population size estimates being compared are small (ratios may be 

misleading in this context). 

 Metrics should be obtained from stochastic models using a matched run 

approach because this is likely to reflect the most precautionary approach. 

 Should probabilistic metrics be used, based on the rationale that they have 

been widely used in the past within published conservation science literature, 

and may still be used extensively in the future, it should be acknowledged that 

these have received criticism in Green et al. (2016) and Cook & Robinson 

(2016b). 

 Density dependence should only be included where there is evidence that this 

may be occurring in the population of interest, otherwise use of density-

independent models, or a range of density dependent structures, is advised. 

 Global Sensitivity Analysis approaches detailed in Aiello-Lammens & 

Akçakaya (2016) and Bayesian approaches utilised by Freeman et al. (2014) 

to separate model outcome uncertainty that arises due to uncertainty in the 

parameter estimates used to build the models from the uncertainty in the 

effects of the management action (in this case wind farms) should be 

considered. 
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3. Population Modelling: Methods 

 

3.1 Modelling Approach 

 

A key early decision by the Steering Group was to agree which population modelling 

approach to use. Conventionally, PVA have been applied by assuming values for 

demographic parameters (specifically survival, varying between ages, and 

productivity) and projecting simulated population predictions forward in time from a 

specified starting point (typically at an ‘equilibrium’ age-structure).  No data are 

directly used, so no models are fitted and the results can be assumed valid for any 

species with demography approximately similar to that adopted in the simulations.  In 

practice, since values appropriate for a given species will rarely be known with much 

accuracy, a range of values tend to be considered.  The advantage of this approach 

is that since no data fitting is required, there is a considerable reduction in 

computational demands.  The second advantage is that it is possible to model a 

range of seabird life history strategies.  As such, one can construct an analysis that 

is potentially relevant to all species and regions.  This approach is less desirable 

where one wishes to understand a specific region where real data are available, or 

where one wishes to address generic questions with real data.  One example of the 

latter is the need for a generic solution to the common situation where there are non-

local empirical data that are relevant to the focal colony which itself lacks data (see 

next section).  Another feature of these models is that the confidence intervals can 

be unrealistically narrow.  

 

In the previous population modelling contract CEH undertook for Marine Scotland 

Science, we fitted state-space models using Bayesian techniques via WinBUGS to 

data from four SPAs for five species in the Forth/Tay region (Freeman et al. 2014). 

Here, no parameter values were specified beforehand; all were estimated from the 

data prior to projecting the population predictions forwards to beyond the period of 

the data.  In these models, the population is assumed to change stochastically (the 

‘state process’) and the counts to be equal in expectation to the population level (or 

part of it), subject also to sampling variability (the ‘observation process’).  Using this 

method, sampling co-variances of parameter estimates are naturally accommodated. 

In Freeman et al. (2014), demographic parameters were assumed to vary about a 

mean value, with a specified variance, where these were estimated from models 

applied at sites with more substantial data (generally the Isle of May).  While the 

need for defining parameter configurations a priori are reduced in such models, the 

results are dependent upon the data used (precision, for example, will depend in part 

upon the likely representativeness of the data from the well-studied colony).  One 

advantage of this approach is in the case where there is interest in specific 
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colonies/study areas, thereby providing a rationale for fitting the model to real data. 

Of the various methods that can be used to fit models to data, we consider this 

approach to be the most robust because of greater realism in the estimating of 

credibility intervals, in particular due to the partitioning of observation and process 

error, in cases where there are empirical data (counts and/or demography data) or 

informative priors (see Freeman et al. 2014 for a discussion of this).  A second 

advantage of this approach is in addressing generic questions with real-world data. 

One example has been addressed above that we think is particularly relevant in this 

context, where data are absent from the focal colony but available from an adjacent 

colony, thereby offering a natural, informative prior.  However, considerable thought 

is required before adopting this approach since information from another colony 

cannot automatically be assumed to apply elsewhere, to other species and/or 

regions, and any assumptions should be clearly specified.  Two more advantages 

arise from this approach within the specific context of this project: a) Cook & 

Robinson (2016) have undertaken a comprehensive sensitivity analysis of PVA 

metrics using simulations in a traditional framework, so there would be a benefit in 

testing the performance of the same suite of metrics in an empirical analysis, with 

confidence gained if the same metrics perform well using both approaches; b) there 

is continuity with the previous report (Freeman et al. 2014).  The main disadvantage 

of this approach is the analytical and computational demands.  Furthermore, if there 

is no interest in specific colonies/regions, or if the generic questions that can be 

addressed using real-world data, then a simulation approach is the logical way 

forward.  

 

The Steering Group decided that there was such interest, and that it would be 

complementary to the recent work by Cook & Robinson (2016), so this was the 

method that was undertaken.  Further, the decision was to focus on the three main 

issues emerging from past work and stakeholder interest: sensitivity in a range of 

PVA metrics including a comparison of ratio and probabilistic types, effect of 

population status on sensitivity, and effect of renewables effect size on sensitivity. 

Finally, it was agreed following consideration of the literature that density 

dependence would not be included in the models (see literature review). 

 

3.2 Modelling Methods 

 

3.2.1 Input Data 

 

Five study species were selected: black-legged kittiwake, common guillemot, 

razorbill, herring gull and European shag.  Of these kittiwake, guillemot, razorbill and 

herring gull were considered in Freeman et al. (2014).  As similar models have, in 
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the interim, also been fitted for shags we also consider this extra species.  We 

accumulated data sets on abundance, survival and productivity from four SPAs 

(Buchan Ness to Collieston Coast SPA; Fowsheugh SPA; Forth Islands SPA; St 

Abb’s Head to Fastcastle SPA).  

 

New data were added up to 2016 where available (Freeman et al. 2014 modelled 

data up to 2012).  Data include colony counts, in full if possible but often such data 

are available only in a limited number of years, or else have been made only in 

smaller parts of the main colony (i.e. plots).  Demography is estimated from ringing 

data (survival) or nest record data (productivity per nest/pair).  Such data have long 

been gathered by CEH at the Isle of May in the Forth Islands SPA, but are often 

missing elsewhere in the region.  Data availability and sources for the species 

considered are given in Tables 5 and 6, respectively.  

 

Counts and demographic parameter estimates can be found in Appendix 1. 
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Table 5 
 
Data availability for each species at each SPA. Regular census means annual or near-
annual. Sporadic census is less regular – typically every four to seven years. Sources: 
aSeabirds Monitoring Programme online database; bVicky Anderson/Edward Grace, RSPB, 
pers comm; cRoddy Mavor, JNCC pers comm.; dHarris et al. 2009, 2013; eFrederiksen et al. 
2004 updated; fLahoz-Monfort et al. 2011, 2014; gNewell et al. 2012; hLahoz-Monfort et al. 
2013; iBTO ringing and recovery data, purchased for Freeman et al. 2014 

 
Species SPA Counts Survival (Adult 

birds) 
 

Productivity 

Kittiwake Forth Islands Regular censusa Regular surveye Regular 
censusa,g 

St Abb’s 
Head 

Regular censusa No Regular censusa 

Fowlsheugh Sporadic censusa No Regular censusa 

Buchan Ness Sporadic censusa 
 

No Regular censusa 

Guillemot Forth Islands Regular censusa Regular surveyf Regular 
censusa,g,h 

St. Abb’s 
Head 

Sporadic census a 
Regular sub-plot 
surveya 

No No 

Fowlsheugh Sporadic censusa 

Regular sub-plot 
surveyb 

No No 

Buchan Ness Sporadic censusa 
Sporadic sub-plot 
surveyc 
 

No No 

Razorbill Forth Islands Regular censusa Regular surveyf Regular 
censusa,g,h 

St Abb’s 
Head 

Sporadic censusa 

Regular sub-plot 
surveya 

No No 

Fowlsheugh 
 

Sporadic censusa 
Regular sub-plot 
surveyb 

No No 

Herring gull Forth Islands Regular censusa Historical 
surveyi 

Regular censusa 

St Abb’s 
Head 

Regular censusa 

 
No No 

Shag Forth Islands Regular censusa Regular surveya Regular censusa 

St Abb’s 
Head 

Regular censusa 

 
No Regular censusa 

Buchan Ness Sporadic censusa No No 
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Table 6 
 
Data source for each species at each SPA.  

 
Species SPA Counts Adult survival 

 
Productivity 

Kittiwake Forth Islands Forth Islands Isle of May Isle of May 

St Abb’s 

Head 

St Abb’s Head Isle of May St Abb’s Head 

Fowlsheugh Fowlsheugh Isle of May Fowlsheugh 

Buchan Ness Buchan Ness Isle of May Buchan Ness 

Guillemot Forth Islands Forth Islands Isle of May Isle of May 

St. Abb’s 

Head 

St. Abb’s Head Isle of May Isle of May 

Fowlsheugh Fowlsheugh Isle of May Isle of May 

Buchan Ness Buchan Ness Isle of May Isle of May 

Razorbill Forth Islands Forth Islands Isle of May Isle of May 

St Abb’s 

Head 

St Abb’s Head Isle of May Isle of May 

Fowlsheugh Fowlsheugh Isle of May Isle of May 

Herring gull Forth Islands Forth Islands Isle of May Isle of May 

St Abb’s 

Head 

St Abb’s Head Isle of May Isle of May 

Shag Forth Islands Forth Islands Isle of May Isle of May 

St Abb’s 

Head 

St Abb’s Head Isle of May St Abb’s Head 

Buchan Ness Buchan Ness Isle of May Isle of May 
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3.2.2 Population Models 

 

The models adopted for these data are as described in Freeman et al. (2014) and 

we provide only a brief overview here.  A state-space model for the annual counts 

was adopted, with the expected number of breeding pairs of a population in year t 

given by Nt, where, for a species such as shag that begins breeding at age three is: 

 

             

             (     (
    
 
                       )) 

                 (           ) 

 

Where Nrt and Nat are respectively the numbers of new recruits, and survivors of the 

previous breeding population, in year t.  The model is straightforwardly amended to 

accommodate those species that do not begin breeding until aged five or six.  

Juvenile survival probabilities φj,t are assumed to take a constant value φj , unknown 

but estimable from the data; those for adults φa,t are assumed normally distributed 

mean values and variance estimated from a set of ringing data at the Isle of May. 

Completing the model the annual numbers of chicks per pair ft are estimated with 

means and variance from nest record data gathered at the site in question, where 

available, or using the data from the Isle of May where site-specific productivity data 

are unavailable.  Due to the paucity of kittiwake counts at Fowlsheugh and Buchan 

Ness to Collieston Coast, these were modelled simultaneously in a single 

(multivariate) state-space model, with a common juvenile survival rate.  As in 

Freeman et al. (2014) there were problems modelling the Kittiwakes at the Forth 

Islands SPA; this was due to low counts in 1994, which subsequently recovered for a 

few years, and so the 1994 counts were omitted from the data that informed the 

state space model.  

 

Models were fitted using Bayesian techniques using the software JAGS (Plummer 

2013).  As in Freeman et al. (2014), multiple projections for 25 future years (2016 to 

2041) of wind farm impact under various scenarios (given below) are made by 

repeatedly sampling from the distributions above, effectively generating posterior 

distributions for the abundance in future years.  Using the model above, we thus 

produce ‘baseline’ predictions, under the assumption that prevailing conditions apply 

in future years.  We then produced a series of alternative ‘impacted’ population 

trajectories assuming that adult survival, productivity or both were negatively affected 

by some ‘perturbation’, equating to the effect of an offshore wind farm.  This enables 

a comparison of future predictions following perturbation with those under the ‘status 
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quo’ assumptions, known as the baseline. In consultation with the Steering Group, 

adult survival was set to decline by one of a range of specified rates, namely 0% (i.e. 

no change), 0.5%, 1%, 2% and 3%.  Declines in annual productivity were set to 0%, 

1%, 2%, 3% and 5%.  Finally, combined effects of survival and productivity were set 

to, respectively, 0%/0%, 1%/1%, 2%/2%, 3%/3% and 0.5%/5%.  Note that these are 

percentage point changes, as requested by the Steering Group, which differs from 

the approach taken in Cook & Robinson (2016b) where percentage changes were 

investigated.  In all models, an additional five years were projected with no change in 

survival or productivity, representing a post-wind farm decommissioning period.  

 

3.3 PVA Metric Sensitivity 

 

The above modelling framework allowed us to examine the population changes 

under various levels of impact upon the demographic parameters, given that these 

take the values of the model.  It is, of course, plausible that the average values of 

adult survival and productivity experienced by the populations may differ from those 

implied by the demographic data used, especially where these are ‘borrowed’ from 

adjacent sites for those without such data of their own (for survival, this is all sites 

apart from the Forth Islands; even there, all ringing data are from a single study at 

the Isle of May).  Therefore, we also repeated the entire procedure with demographic 

parameters “mis-specified” to varying degrees.  Specifically, we considered median 

adult mortality (the complement of survival, since survival is generally high in 

seabirds and percentage increases are greatly limited by the constraint of lying 

below a survival rate of one) and productivity to differ from those of the baseline by, 

in turn -30%, -20%, -10%, 10%, 20% and 30%.  The consequences of uncertain 

adoption of demographic parameters could then be examined by plotting a suite of 

PVA metrics against this rate of mis-specification, under a range of renewables 

effect sizes. 

 

The Steering Group, having considered the findings of the literature review, 

requested that we examine the sensitivity of five PVA metrics, and Marine Scotland 

Science requested that we include a sixth metric (PVA F): 

 

1) Median of the ratio of impacted to un-impacted (=baseline) annual growth rate 

(PVA A; Metric No. 2 in Table 2). 

2) Median of the ratio of impacted to un-impacted population size after 25 years 

(PVA B; Metric No. 3 in Table 2). 

3) Median difference in impacted and un-impacted annual growth rates (PVA C; 

Metric No. 12 in Table 2.) 
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4) Median difference between impacted and un-impacted population size after 

25 years (PVA D; Metric No. 13 in Table 2). 

5) Probability of a population decline over 25 years exceeding a) 10% b) 25% 

and c) 50% (PVA E1, E2 and E3 respectively; Metric No. 7 in Table 2). 

6) Centile for un-impacted population which matches the 50th centile for the 

impacted population after 25 years (PVA F; Metric No. 15 in Table 2). 

 

PVAs A and B are ratio metrics, PVAs C and D are metrics related to ratio metrics 

and PVAs E and F are probabilistic metrics.  All of these metrics are readily 

estimable from the repeated simulations above, with posterior distributions of the 

ratios/differences arising from a “matched runs” approach, as recommended (WWT 

2012; Green et al. 2016; Cook & Robinson 2017) i.e. the parameters defining the 

expected annual counts in each replicate are identical, except insofar as the 

expected impacted figures are adjusted to reflect the level of the impact.  Plotting 

these metrics against alternative levels of adult survival or productivity used gives a 

visual assessment of the sensitivity of these metrics to the choice of demographic 

parameters.  

 

Note that for the models of razorbills at Fowlsheugh, two of the thirteen models 

exhibited formal warnings via the Brooks-Gelman statistic values regarding 

convergence for juvenile survival.  However, the estimates of the PVA metrics from 

these models appear to be consistent with the pattern as shown by other 

species/SPAs and so these are retained in the plots. 

 

However, for three species/SPA combinations there were inherent problems with the 

“baseline” model (with no mis-specification).  This was for shags at Buchan Ness, 

having a baseline model which “converged”, but not to anything sensible (the 

observation error was greater than the counts) and for herring gull at both sites, 

which had problems with the convergence of key parameters, adult survival and 

juvenile survival.  Therefore, we considered these three species/SPAs to be 

unreliable and did not use them in the assessment of the sensitivity of the PVA 

metrics. 

 

3.4 Structure of the Results 

 

The Steering Group requested that we examine the sensitivity of these PVA metrics 

to mis-specification in adult mortality and productivity, and investigate to what extent 

this sensitivity varied with predicted population status and size of renewables effect. 

Accordingly, the results section is split into three parts.  
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First, we provide the full results of population modelling, including retrospective data 

fitting, population forecasts and PVA sensitivities for one species/SPA population: 

kittiwakes at Forth Islands.  It was considered by the Steering Group necessary to 

show this comprehensive output for one population only, although models presented 

were undertaken on all populations.  Combining the mis-specifications in adult 

mortality or productivity with the scenarios of annual decline in adult survival or 

productivity provides four graphical outputs:  

 

1. Mis-specification in adult mortality with scenarios of renewables-induced 

change in productivity; 

2. Mis-specification in adult mortality with scenarios of change in adult survival; 

3. Mis-specification in productivity with scenarios of renewables-induced change 

in productivity; 

4. Mis-specification in productivity with scenarios of change in adult survival.  

 

Second, we present PVA sensitivities in relation to population status, combining data 

from all species/SPAs for which we achieved model convergence.  We estimated the 

projected population growth rate as follows: 

 

λ = (
                                         

                                         
)
    

 

 

Lambda is calculated for the baseline model and takes the values for the various 

species/SPA combinations shown in Table 7.  Populations were classed as 

increasing (lambda > 1) or decreasing (lambda < 1).  Of the four combinations 

outlined above, we only show results from the analysis of mis-specification in adult 

mortality with the maximum scenario of change in adult survival (3%), to maximise 

clarity. 

 

Third, we present PVA sensitivities in relation to scenarios of change resulting from 

the renewables development (i.e. the effect size).  Of the four combinations outlined 

above, we only show results from the analysis of mis-specification in adult mortality 

with scenarios of change in adult survival. 
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Table 7 
 
Projected population growth rates over the period 2016-2041 for Species/SPA populations. 

 
Species/SPA population Lambda 

  

Kittiwakes:  

    Forth Islands 0.964 

    St Abb’s Head 0.937 

    Fowlsheugh 0.969 

    Buchan Ness to Collieston Coast 0.967 

  

Guillemots:  

    Forth Islands 1.012 

    St Abb’s Head 1.018 

    Fowlsheugh 0.997 

    Buchan Ness to Collieston Coast 1.022 

  

Razorbills:  

    Forth Islands 1.023 

    St Abb’s Head 0.991 

    Fowlsheugh 1.040 

  

Shags:  

    Forth Islands 1.004 

    St Abb’s Head 0.980 
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4. Population Modelling: Results 

 

4.1 Population Modelling and PVA Sensitivity in Forth Islands Kittiwakes 

 

The data available for Forth Island kittiwakes, the population for which we present 

the full set of outputs, ranges from 1984 to 2016.  The annual variation in the median 

adult survival and productivity as well as the posterior distribution of juvenile survival 

and the observation error are given in Figure 1.  The latter two parameters 

approximate a normal distribution, with a mean juvenile survival of 0.685.  The model 

suggests that Kittiwakes at the Forth SPA have declined from an initial abundance of 

just over 10,000 to about 4,000 in 2016.  Future projections indicate further declines 

(Figures 2a-c), though note the wide credible intervals, broadening as time passes, 

as uncertainty increases in these estimates. 

 

For the sensitivity analysis, the median population size after 25 projected years 

(2041) was estimated under a range of mis-specifications in adult mortality or 

productivity and scenarios of annual decline in adult survival or productivity (Figure 

3).  The estimated population size when adult survival or productivity does not 

change and there is no mis-specification in the Bayesian model results in an 

estimate of approximately 1,300 birds.  As expected, population size under all effect 

size scenarios declines with increasing mortality and increases with increasing 

productivity (Figure 3).  These relationships are non-linear, and different scenarios of 

annual decline diverge as the overall effect of mis-specification strengthens, because 

percentage point changes in mis-specification have a relative, not absolute effect on 

population size.  

 

The outputs of PVA metric sensitivity can be found in Figures 4a-h for PVA A, B, C, 

D, E1, E2, E3 and F, respectively (see Section 3.3 of the methods for a definition of 

each metric).  We estimated the PVA metrics using seven model runs for changes in 

adult mortality (-30% to +30% at 10% increments) and seven runs for productivity    

(-30% to +30% at 10% increments).  The model run of no change in adult mortality or 

productivity is shared by both, hence a total of thirteen models were run.  

 

The ratio of impacted to un-impacted annual growth rate (PVA A; Figure 4a) was 

very close to one for the full range of scenarios and, matching theory and past 

evidence using simulations, was insensitive to mis-specification in demographic 

parameters.  One possibility for the low sensitivity of PVA A is the scale of values, 

with all values being close to one, and, therefore, sensitivity potentially appearing low 

in a visual assessment even in cases where it is not.  However, we show that this is 
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not the case in Appendix 2, where we consider a 25 year growth rate, whereby lines 

deviate markedly from one and low sensitivity is still apparent. 

 

Estimates for the ratio of impacted to un-impacted population size after 25 years 

(PVA B; Figure 4b) showed a range of values with respect to scenarios of change in 

productivity and, in particular, mortality, but it was also insensitive to mis-

specification in demographic parameters.  The PVA metric representing the 

difference in impacted and un-impacted growth rates (PVA C; Figure 4c) was also 

comparatively insensitive.  In contrast, the PVA metric representing the difference in 

impacted and un-impacted population size (PVA D; Figure 4d) was considerably 

more sensitive, and showed non-linear patterns of change which were dependent on 

the effect size scenario, associated with the relationship between absolute and 

relative changes in population size (as with Figure 3).  

 

As regards the probabilistic metrics, the metric presenting the probability of a 

population decline over 25 years exceeding 10%, 25% and 50% (PVAs E1, E2 and 

E3; Figure 4e, f and g respectively) showed high sensitivity to mis-specification both 

in mortality and reproduction.  Each shows a non-linear pattern of change in line with 

expectations and past use of these metrics, including the expected variation between 

PVAs E1, E2 and E3 in relation to the stated exceedance thresholds of 10%, 25% 

and 50%.  In contrast, the metric representing the centile for un-impacted population 

which matches the 50% centile for the impacted population after 25 years (PVA F; 

Figure 4h) showed moderately low sensitivity to mis-specification of survival and 

productivity.  It was less sensitive than PVA E with and more sensitive than ratio 

metrics PVA A and B. 

 

Graphical presentation of sensitivity of PVA metrics for all 13 species/SPA 

combinations can be found in Appendix 3.  
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Figure 1: Diagnostics plot from the Bayesian state space model for adult survival, 

productivity, juvenile survival and observation error. 
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Figure 2a: Estimated total abundance from 1984 to 2016, with an additional 25 years of 

projections with various declines in productivity and a final five years of projections with no 
decline in productivity. 
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Figure 2b: Estimated total abundance from 1984 to 2016, with an additional 25 years of 

projections with various declines in adult survival and a final five years of projections with no 
decline in adult survival. 
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Figure 2c: Estimated total abundance from 1984 to 2016, with an additional 25 years of 

projections with various declines in both productivity and adult survival and a final five years 

of projections with no decline in either productivity or adult survival. 
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Figure 3: Median impacted population size after 25 years of projections under various 

scenarios of mis-specification in productivity and adult mortality.  Adult mortality mis-
specification is illustrated in the upper panels and productivity mis-specification in the lower 
panels.  Mis-specification was varied from -30% to +30% (with 0% representing no mis-
specification).  The five coloured lines represent the different levels of potential impact on 
annual productivity (left panels) or annual adult survival (right panels) over the hypothetical 
25 year lifetime of the wind farm (2016-2041). 
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Figure 4a: PVA Metric A – ratio of population growth rate from 2016-2041, comparing 

impacted population vs. un-impacted population.  Adult mortality mis-specification is 
illustrated in the upper panels and productivity mis-specification in the lower panels.  Mis-
specification was varied from -30% to +30% (with 0% representing no mis-specification). 
The five coloured lines represent the different levels of potential impact on annual 
productivity (left panels) or annual adult survival (right panels) over the hypothetical 25 year 
lifetime of the wind farm (2016-2041). 
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Figure 4b: PVA Metric B – ratio of population size at 2041, comparing impacted population 

vs. un-impacted population.  Adult mortality mis-specification is illustrated in the upper 
panels and productivity mis-specification in the lower panels.  Mis-specification was varied 
from -30% to +30% (with 0% representing no mis-specification).  The five coloured lines 
represent the different levels of potential impact on annual productivity (left panels) or annual 
adult survival (right panels) over the hypothetical 25 year lifetime of the wind farm (2016-
2041). 
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Figure 4c: PVA Metric C – difference in population growth rate from 2016-2041, comparing 

impacted population vs. un-impacted population.  Adult mortality mis-specification is 
illustrated in the upper panels and productivity mis-specification in the lower panels.  Mis-
specification was varied from -30% to +30% (with 0% representing no mis-specification). 
The five coloured lines represent the different levels of potential impact on annual 
productivity (left panels) or annual adult survival (right panels) over the hypothetical 25 year 
lifetime of the wind farm (2016-2041). 
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Figure 4d: PVA Metric D – difference in population size at 2041, comparing impacted 

population vs. un-impacted population.  Adult mortality mis-specification is illustrated in the 
upper panels and productivity mis-specification in the lower panels.  Mis-specification was 
varied from -30% to +30% (with 0% representing no mis-specification).  The five coloured 
lines represent the different levels of potential impact on annual productivity (left panels) or 
annual adult survival (right panels) over the hypothetical 25 year lifetime of the wind farm 
(2016-2041). 
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Figure 4e: PVA Metric E1 – probability of population decline greater than 10% from 2016-

2041.  Adult mortality mis-specification is illustrated in the upper panels and productivity mis-
specification in the lower panels.  Mis-specification was varied from -30% to +30% (with 0% 
representing no mis-specification).  The five coloured lines represent the different levels of 
potential impact on annual productivity (left panels) or annual adult survival (right panels) 
over the hypothetical 25 year lifetime of the wind farm (2016-2041). 
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Figure 4f: PVA Metric E2 – probability of population decline greater than 25% from 2016-

2041.  Adult mortality mis-specification is illustrated in the upper panels and productivity mis-
specification in the lower panels.  Mis-specification was varied from -30% to +30% (with 0% 
representing no mis-specification).  The five coloured lines represent the different levels of 
potential impact on annual productivity (left panels) or annual adult survival (right panels) 
over the hypothetical 25 year lifetime of the wind farm (2016-2041). 
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Figure 4g: PVA Metric E3 – probability of population decline greater than 50% from 2016-

2041.  Adult mortality mis-specification is illustrated in the upper panels and productivity mis-
specification in the lower panels.  Mis-specification was varied from -30% to +30% (with 0% 
representing no mis-specification).  The five coloured lines represent the different levels of 
potential impact on annual productivity (left panels) or annual adult survival (right panels) 
over the hypothetical 25 year lifetime of the wind farm (2017-2041). 
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Figure 4h: PVA Metric F – centile from un-impacted population size equal to the 50th centile 

of the impacted population size, at 2041.  Adult mortality mis-specification is illustrated in the 
upper panels and productivity mis-specification in the lower panels.  Mis-specification was 
varied from -30% to +30% (with 0% representing no mis-specification).  The five coloured 
lines represent the different levels of potential impact on annual productivity (left panels) or 
annual adult survival (right panels) over the hypothetical 25 year lifetime of the wind farm 
(2016-2041). 
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4.2 PVA Sensitivity in Relation to Population Status and Renewables Effect 

 Size 

 

To examine the effects of population status and renewables effect size, we 

integrated the results for the 13 SPA species/combinations for which we had good 

model convergence at the time of writing: 

 

 Kittiwakes: Forth Islands; St Abb’s Head; Fowlsheugh; Buchan Ness to 

Collieston Coast 

 Guillemots: Forth Islands; St Abb’s Head; Fowlsheugh; Buchan Ness to 

Collieston Coast 

 Razorbills: Forth Islands; St Abb’s Head; Fowlsheugh 

 Shags: Forth Islands; St Abb’s Head 

 

Six of the thirteen indicated increasing abundance over time.  These are guillemots 

at Forth Islands, St Abb’s Head and Buchan Ness to Collieston Coast, razorbills at 

Forth Islands and Fowlsheugh and shags at Forth Islands, while the remainder 

showed a decrease (Table 7), providing a comparatively even balance facilitating 

this comparison.  Results for differences in sensitivity in decreasing and increasing 

populations can be found in Figures 5a-h for PVA A, B, C, D, E1, E2, E3 and F, 

respectively.  These plots show results from the analysis of mis-specification in adult 

mortality with the maximum scenario of change in adult survival (3%). 

 

We present PVA sensitivities in relation to scenarios of renewables effect size in 

Figures 6a-h for PVA A, B, C, D, E1, E2, E3 and F, respectively.  Of the four 

combinations shown in Figures 3 and 4, we only show results from the analysis of 

mis-specification in adult mortality with scenarios of change in adult survival, with 

effect sizes of 0.5%, 1%, 2% and 3%. 

 

For PVA A, values approximate one (range 0.977-1) and there was no discernible 

difference in sensitivity between decreasing and increasing populations or with 

respect to renewables effect size (Figures 5a and 6a).  Note that although annual 

growth rates are close to one, 25 year growth rates will show a discernible 

difference.  For example, an annual growth rate of 0.977, results in a 25 year growth 

rate of 0.559. 

 

For PVA B, there was also no discernible difference in sensitivity between 

decreasing and increasing species (Figure 5b).  There was an increase in sensitivity 

with increasing effect sizes, with slopes flatter at 0.5% effect size compared with 3% 
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effect size, though the effect was small and the metric can be considered 

comparatively insensitive to all scenarios of effect size (Figure 6b).  

 

PVAs C and D had higher sensitivity than PVAs A and B overall, but showed a 

similar response to population status and renewables effect size to PVA B, such that 

there was no clear difference between decreasing and increasing species in slope 

(Figure 5c and 5d), and a slight increase in gradient with increasing effect size from 

0.5% to 3% (Figure 6c and 6d). 

 

For PVA E, increasing populations showed greater sensitivity to probability of 

population decline greater than 10% than decreasing populations (Figure 5e), 

whereas the converse was true for a probability of population decline greater than 

50% (Figure 5g).  Similar sensitivities were apparent at 25% (Figure 5f).  These 

differences reflect the pattern of probabilities of thresholds of change in population 

size relative to population status, with mis-specification having a smaller effect on 

probability of a smaller change in population size (10%) in a decreasing population 

since probability of this outcome is very high in most circumstances, and a smaller 

effect on probability of a larger change in population size (50%) in an increasing 

population (where probability of this outcome is very low in most circumstances). 

There was no clear difference in sensitivity with respect to renewables effect size, 

being comparatively high and variable in all scenarios at all three thresholds (Figures 

6e-g). 

 

PVA F showed a similar response to PVAs A, B, C and D with respect to population 

status and effect size.  Thus, there was no clear difference in sensitivity between 

decreasing and increasing species in slope, with sensitivity overall being moderately 

low, higher than ratio metrics but lower than PVA E (Figure 5h).  Sensitivity was also 

comparatively unaffected by effect sizes (Figure 6h). 
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Figure 5a: PVA Metric A – ratio of population growth rate from 2016-2041, comparing 

impacted population vs. un-impacted population, for changing adult mortality and a 3% 
decrease in adult survival, across decreasing populations and increasing populations. 
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Figure 5b: PVA Metric B – ratio of population size at 2041, comparing impacted population 

vs. un-impacted population, for changing adult mortality and a 3% decrease in adult survival, 
across decreasing populations and increasing populations. 
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Figure 5c: PVA Metric C – difference in population growth rate from 2016-2041, comparing 

impacted population vs. un-impacted population, for changing adult mortality and a 3% 
decrease in adult survival, across decreasing populations and increasing populations. 
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Figure 5d: PVA Metric D – difference in population size at 2041, comparing impacted 

population vs. un-impacted population, for changing adult mortality and a 3% decrease in 
adult survival, across decreasing populations and increasing populations. 
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Figure 5e: PVA Metric E1 – probability of population decline greater than 10% from 2016-

2041, for changing adult mortality and a 3% decrease in adult survival, across decreasing 
populations and increasing populations. 
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Figure 5f: PVA Metric E2 – probability of population decline greater than 25% from 2016-

2041, for changing adult mortality and a 3% decrease in adult survival, across decreasing 
populations and increasing populations. 
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Figure 5g: PVA Metric E3 – probability of population decline greater than 50% from 2016-

2041, for changing adult mortality and a 3% decrease in adult survival, across decreasing 
populations and increasing populations. 
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Figure 5h: PVA Metric F – centile from un-impacted population size equal to the 50th centile 

of the impacted population size, at 2041, for changing adult mortality and a 3% decrease in 
adult survival, across decreasing populations and increasing populations. 
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Figure 6a: PVA Metric A – ratio of population growth rate from 2016-2041, comparing 

impacted population vs. un-impacted population, for changing adult mortality and various 
decreases in adult survival, across all populations. 
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Figure 6b: PVA Metric B – ratio of population size at 2041, comparing impacted population 

vs. un-impacted population, for changing adult mortality and various decreases in adult 
survival, across all populations. 
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Figure 6c: PVA Metric C – difference in population growth rate from 2016-2041, comparing 

impacted population vs. un-impacted population, for changing adult mortality and various 
decreases in adult survival, across all populations. 
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Figure 6d: PVA Metric D – difference in population size at 2041, comparing impacted 

population vs. un-impacted population, for changing adult mortality and various decreases in 
adult survival, across all populations. 
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Figure 6e: PVA Metric E1 – probability of population decline greater than 10% from 2016-

2041, for changing adult mortality and various decreases in adult survival, across all 
populations. 
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Figure 6f: PVA Metric E2 – probability of population decline greater than 25% from 2016-

2041, for changing adult mortality and various decreases in adult survival, across all 
populations. 
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Figure 6g: PVA Metric E3 – probability of population decline greater than 50% from 2016-

2041, for changing adult mortality and various decreases in adult survival, across all 
populations. 
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Figure 6h: PVA Metric F – centile from un-impacted population size equal to the 50th centile 

of the impacted population size, at 2041, for changing adult mortality and various decreases 
in adult survival, across all populations. 
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5. Discussion and Recommendations 

 

5.1 PVA Metric Sensitivity 

 

This study represents the most comprehensive assessment of PVA metric sensitivity 

to mis-specification of demographic rates in relation to population status and 

perturbation effect sizes in the seabird/marine renewable context using real-world 

data.  Using available data on abundance, survival and productivity in a well-studied 

region of the UK and Bayesian population modelling approaches, we compared the 

sensitivity to mis-specification of input demographic parameters of six PVA metrics, 

comprising two ratio metrics (PVAs A and B), two metrics related to ratio metrics 

(PVAs C and D) and two probabilistic metrics (PVAs E and F).  

 

By undertaking an analysis of real-world data sets, our work provides a useful 

complement to recent work on sensitivity of PVA metrics to input parameter 

uncertainty using simulation modelling of generic seabird species with varying life 

histories (Cook & Robinson 2016b, 2017).  The close accordance in findings 

provides confidence on choice of PVA metrics that are least sensitive to such mis-

specification, and, therefore, most suitable for use in wind farm assessments. 

 

5.2 Recommendations on PVA Metrics 

 

The two ratio metrics performed best among the six metrics considered with respect 

to sensitivity to mis-specification in input parameters.  The ratio of impacted to un-

impacted annual growth rate (PVA A) and ratio of impacted to un-impacted 

population size after 25 years (PVA B) both showed low sensitivity to demographic 

input mis-specification, in accordance with findings from other studies (Green et al. 

2016; Cook & Robinson 2016b, 2017), with PVA A performing consistently better 

than PVA B.  

 

The calculations of difference in impacted and un-impacted annual growth rates 

(PVA C) and between impacted and un-impacted population size after 25 years 

(PVA D) were not so readily interpretable but they are useful when growth rates or 

population size estimates are small.  

 

In keeping with other work, we found that the probability PVA metric (PVA E) was 

highly sensitive and we, therefore, caution against using it in this context, in 

accordance with recommendations by other authors (Green et al. 2016; Cook & 

Robinson 2016b, 2017).  We were not tasked with testing the sensitivity of 

counterfactual probabilistic metrics, in particular Metric 8 in Table 2 (“Change in 
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probability of a 10, 25 or 50% decline”, also known as “Counterfactual of the 

probability of population decline”, and linked to Metric 7 in Table 2/PVA E in this 

report), a metric that has been used frequently in assessments, often in association 

with PVA E.  However, a visual examination of the figures presenting PVA metric E 

shows in almost all cases, a clear divergence between the lines across the range of 

values of mis-specification, and this change in the difference between values across 

effect sizes represents sensitivity to mis-specification of demographic rates in the 

excess probability referred to here.  Good examples where this is clear are Figure 4e 

(all four panels) and Figure 4f (all four panels).  It is not clear in all cases – see for 

example Figure 4g (top left panel).  However, overall we can conclude that this 

counterfactual is comparatively more sensitive to mis-specification than ratio metrics.  

 

Finally, the metric representing the centile from the un-impacted population size 

equal to the 50th centile of the impacted population size at the end of the wind farm 

(PVA F) showed moderately low sensitivity to mis-specification of survival and 

productivity.  It performed considerably better than the other probabilistic metric 

(PVA E - probability of a population decline) with markedly lower sensitivity to mis-

specification, population status and renewables effect size.  However, it was more 

sensitive than ratio metrics, and in some cases showed unstable sensitivity which 

was less apparent in PVA metrics A and B (see Figures 5 a, b and h; Figures 6 a, b 

and h). 

 

We recommend that those undertaking assessments consider the relative 

performance of different metrics with respect to sensitivity to mis-specification of 

input parameters.  To summarise, of the two ratio and two probabilistic metrics 

considered here, the order with respect to sensitivity to mis-specification of input 

parameters was PVA A; PVA B; PVA F; PVA E. PVA E was much more sensitive 

than the other three and is not recommended for use in this context.  If the first three 

are used in assessments in future, we recommend that interpretation should factor in 

their relative sensitivities.  We also recommend that PVA metrics (C and D) are used 

since they are estimable when ratios are being calculated.  

 

Note that we do not make recommendations on appropriate thresholds in relation to 

the above metrics, which is a societal choice and a matter for regulators. 
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5.3 Recommendations on PVA Analysis in Assessments of Renewables on 

 Seabirds 

 

We believe that Population Viability Analysis is a robust framework for forecasting 

future population change of seabirds under baseline conditions and under conditions 

of varying perturbations on demographic rates caused by renewable developments.  

 

Furthermore, we believe that Bayesian state-space models have considerable 

potential in Population Viability Analysis using real data.  Forecasts are made 

straightforward by the adoption of this approach, since posterior distributions are 

naturally generated.  Furthermore, these methods do not suffer from the same 

criticism aimed at traditional methods that confidence intervals are unrealistically 

narrow.  In addition, the study region has some of the most comprehensive 

demographic data available on seabirds in the UK, collected by CEH at their long 

term field site on the Isle of May, which has proved extremely valuable in carrying 

out this work.  However, the restricted availability of high quality data left us with no 

alternative but to use these data on other populations where no such data exist. 

Despite this, the models of these other populations generally performed well. 

Exceptions were where population counts were sparse and variable, a particular 

issue at the Buchan Ness to Collieston Coast SPA.  

 

5.4 Future Research and Monitoring Priorities 

 

A fruitful avenue for future research would be extension to more complex models 

that incorporate environmental covariates or density dependence.  Although there 

remains a lack of empirical evidence linking environmental covariates and seabird 

demography (Daunt et al. 2017), examples do exist (e.g. Frederiksen et al. 2004) 

and could form the rationale for future modelling including covariates.  Evidence for 

density dependence in UK seabird populations is emerging (Horswill et al. 2016) and 

could be included where there is strong evidence for its occurrence including, 

crucially, whether the form of density dependence is compensatory or depensatory. 

 

It would also be beneficial to estimate PVA metric sensitivity across a broader range 

of real world examples, comprising more species with differing life histories than we 

could consider here.  This approach would enable a more comprehensive 

assessment of ratio and probabilistic metrics.  Furthermore, it would be useful to test 

PVA F using a simulation modelling approach (Cook & Robinson 2016b, 2017) to 

establish whether a similar sensitivity to mis-specification of input parameters was 

apparent using that method.  Another future priority would be to test sensitivity of 

different metrics using different population modelling methods: in addition to 
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Bayesian state-space models, other methods that may be more suited to sparse 

data could be incorporated, such as age-structured population growth models. 

 

It is encouraging to note the value of plot counts, since these can be maintained on 

an annual or near- annual basis much more readily than full colony counts.  

However, we would recommend that full counts continue to be undertaken regularly 

to ensure that plots continue to be representative.  Local data on survival and 

productivity add significantly to the ability to model populations effectively.  However, 

our study demonstrates that PVA metrics, and their sensitivity to mis-specification, 

can be estimated where data are absent from the focal colony but available from an 

alternative, ideally nearby colony, thereby offering a natural, informative model prior. 

However, considerable thought is required before adopting this approach since 

information from another colony cannot automatically be assumed to apply 

elsewhere to other species and/or regions. 
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Appendix 1 

 

Input Parameters to the Bayesian State Space Models 

 

This appendix details the input values for the population models.  

 

Input parameters for adult survival and productivity are provided at two scales.  In 

the Bayesian models, they are on the logit or the log scale (Table A1.1).  However, 

these can be somewhat difficult to understand, so we have back transformed those 

that are on the log scale (productivity for kittiwakes and shags), using the mean and 

variance on the log scale to estimate the mean and variance of the untransformed 

productivity, which is log-normally distributed; these estimates can be verified with 

simulations.  The two approaches matched.  We, therefore, ran simulations for the 

parameters on the logit scale and estimate the mean and variance for the remaining 

untransformed survival and productivity parameters (Table A1.2). 

 

Population counts are provided for all populations that were successfully modelled in 

this project in Tables A1.3 (kittiwakes), A1.4a and A1.4b (guillemots), A1.5a and 

A1.5b (razorbills) and A1.6 (shags). 

 

  



97 
 

Table A1.1 

 

Input parameters into the Bayesian state space models for kittiwakes, guillemots, razorbills 
and shags at Forth Island, St Abbs, Buchan Ness and Fowlsheugh SPAs.  Note that adult 
survival is on the logit scale and productivity is on the log scale for kittiwakes and shags, and 
on the logit scale for guillemots and razorbills (see Table A1.2 for values on the 
untransformed scale). 

 

Species SPA Adult survival: 

mean (sd) 

Productivity: 

mean (sd) 

Kittiwake Forth Islands 1.875 (0.546) -0.790 (0.898) 

 St Abb’s Head 1.875 (0.546) -0.615 (0.679) 

 Fowlsheugh 1.875 (0.546) -0.313 (0.492) 

 Buchan Ness to Collieston Coast 1.875 (0.546) -0.678 (0.699) 

    

Guillemot Forth Islands 2.705 (0.634) 1.041 (0.583) 

 St Abb’s Head 2.705 (0.634) 1.041 (0.583) 

 Fowlsheugh 2.705 (0.634) 1.041 (0.583) 

 Buchan Ness to Collieston Coast 2.705 (0.634) 1.041 (0.583) 

    

Razorbill Forth Islands 2.494 (0.685) 0.552 (0.350) 

 St Abb’s Head 2.494 (0.685) 0.552 (0.350) 

 Fowlsheugh 2.494 (0.685) 0.552 (0.350) 

    

Shag Forth Islands 2.147 (1.215) -0.052 (0.637) 

 St Abb’s Head 2.147 (1.215) 0.170 (0.590) 
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Table A1.2 
 
Input parameters into the Bayesian state space models for kittiwakes, guillemots, razorbills 
and shags at Forth Island, St Abbs, Buchan Ness and Fowlsheugh SPAs.  Note that adult 
survival and productivity are on the untransformed scale. 

 
Species SPA Adult survival: 

mean (sd) 

Productivity: 

mean (sd) 

Kittiwake Forth Islands 0.855 (0.067) 0.679 (0.755) 

 St Abb’s Head 0.855 (0.067) 0.681 (0.521) 

 Fowlsheugh 0.855 (0.067) 0.825 (0.432) 

 Buchan Ness to Collieston Coast 0.855 (0.067) 0.648 (0.515) 

    

Guillemot Forth Islands 0.927 (0.045) 0.725 (0.111) 

 St Abb’s Head 0.927 (0.045) 0.725 (0.111) 

 Fowlsheugh 0.927 (0.045) 0.725 (0.111) 

 Buchan Ness to Collieston Coast 0.927 (0.045) 0.725 (0.111) 

    

Razorbill Forth Islands 0.910 (0.058) 0.631 (0.080) 

 St Abb’s Head 0.910 (0.058) 0.631 (0.080) 

 Fowlsheugh 0.910 (0.058) 0.631 (0.080) 

    

Shag Forth Islands 0.847 (0.145) 1.163 (0.823) 

 St Abb’s Head 0.847 (0.145) 1.410 (0.909) 
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Table A1.3 
 
Kittiwake breeding population sizes used in population models for each SPA. Values 
represent number of breeding pairs.  

 
SPA Forth 

Islands 
Forth 

Islands 
Forth 

Islands 
Forth 

Islands 
Forth 

Islands 
St 

Abbs 
to 

Fast 
Castle 
SPA 

Fowlsheugh 
SPA 

Buchan 
Ness to 

Collieston 
Coast 
SPA 

Site Bass 
Rock 

Craigleith Fidra Isle of 
May 

The 
Lamb 

St 
Abb's 
Head 
NNR 

Fowlsheugh Boddam 
to 

Collieston 

1981    6115     

1982         

1983         

1984    6012     

1985    5510     

1986  725 532 4801 167 13940 22051 19498 

1987 2400  726 6765 214 15182   

1988  770 610 7638 175 16200   

1989  840 705 7564 250 19066   

1990  850 598 8129 187 17642   

1991   494 6535 106 16183 23522  

1992   489 6916 223 16524 34872  

1993  1028 452 7009 84 15268   

1994  564 330 3751 160 13007   

1995  951 435 7603 210 13670  24957 

1996 2142 509 314 6269 143 13437   

1997 3044 714 298 6518 119 13393   

1998   243 4306  8044   

1999 1307 511 225 4196 115 9576 18800  

2000 1000 539 343 4618 132 11077   

2001 670 440 243 3639 117 8028  14091 

2002 774 383 315 3666 139 8890   

2003 910 450 273 3335 124 6642   

2004 660 501 217 3876 126 6239  13330 

2005 563 492 257 3790 94 7239   

2006 505 444 275 3167 202 6288 11140  

2007 377 508 244 3424 96 6463  12542 

2008 323 513 222 3354 110 5298   

2009 425 594 237 2316 82 4616 9454  

2010 440 600 232 3422 133 4744   

2011 313 542 204 2685 140 4688   

2012 395 620 191 2465 95 4314 9388  

2013 270 293 128 1712 47 3403   

2014 324 300 167 2464 84 3625   

2015 441 537 275 3433 99 4209 9655  

2016 325 468 259 2912 101 2779   
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Table A1.4a 
 
Guillemot breeding population sizes used in population models for Forth Islands 
SPA. Values represent number of breeding pairs. Counts of individuals were 
converted to pairs using k-values from the Isle of May (Harris et al. 2015a, updated). 
Count type WCC = whole colony count. 
 

SPA Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Site Bass Rock Craigleith Fidra Isle of May The Lamb 

Count 
type 

WCC WCC WCC WCC WCC 

1981    11250  

1982      

1983    14750  

1984    13000  

1985    13000  

1986  1404 126 13700 1967 

1987 1797  53 11680 572 

1988  969 88 11223 1604 

1989  1181 101 12736 2502 

1990  1167 67 12632 1807 

1991   134 11440 1631 

1992   161 11511 2136 

1993  981 143 12418 2287 

1994  1400 219 13843 2309 

1995  1263 172 15326 1887 

1996 1911 1112 153 14500 2163 

1997 2682 507 173 17340 2829 

1998   207 17384 2063 

1999 1890 1333 293 16933 2935 

2000 2373 1913 427 17979 1677 

2001 2395 2087 448 18442 1431 

2002 2452 1291 506 20185 820 

2003 2057 1546 434 19519 1449 

2004 1966 1549 492 20332 1517 

2005 1547 1208 583 18858 1313 

2006 2346 1215 333 15578 1268 

2007 1030 1058 541 15536 1283 

2008 1402 1347 353 15036 2541 

2009 2136 1512 439 14143 1842 

2010 1329 919 429 15029 1806 

2011 1906 1625 316 14955 1944 

2012 1328 1371  14100  

2013 1546 1347 372 13349 2224 

2014 1759 2498 550 14248 2403 

2015 2385 2254 467 15945 2289 

2016 1562 1798 325 16132 2150 
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Table A1.4b 
 
Guillemot breeding population sizes used in population models for St Abbs Head to Fast 
Castle SPA, Fowsheugh SPA and Buchan Ness to Collieston Coast SPA.  Values represent 
number of breeding pairs.  Counts of individuals were converted to pairs using k-values from 
the Isle of May (Harris et al. 2015a, updated).  Count type WCC = whole colony count; PC = 
mean of plot means. 

 
SPA St Abbs to 

Fast Castle 
SPA 

St Abbs 
to Fast 
Castle 
SPA 

Fowlsheug
h SPA 

Fowlsheugh 
SPA 

Buchan Ness 
to Collieston 
Coast SPA 

Buchan Ness 
to Collieston 
Coast SPA 

Site St Abb's 
Head NNR 

St Abb's 
Head 
NNR 

Fowlsheug
h 

Fowlsheugh Boddam to 
Collieston 

Boddam to 
Collieston 

Count 
type 

WCC PC WCC PC WCC PC 

1981       

1982       

1983       

1984  142  198   

1985  119  209   

1986 16443 157 37453 173 9225  

1987 17775 156  208   

1988 18667 143  194   

1989 21394 165  232   

1990 21790 172  206   

1991  174     

1992  167 39381 240  126 

1993 20036 180  217   

1994  190  216   

1995  199  237 16602 137 

1996  177  244   

1997  240  244   

1998 26254 219  234  148 

1999  232 48651 295   

2000  272  234   

2001  248  253 19286 185 

2002  318     

2003 29502 264  296   

2004  255  300  202 

2005  283  243   

2006  238 39370 216   

2007  270  225 17876 153 

2008 29079 252  305   

2009  304 42339 244   

2010  229  240  163 

2011  299  285   

2012  232 37277 233   

2013 29828 253  221  158 

2014  265  199   

2015  223 40979 236   

2016  236  201  194 
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Table A1.5a 
 
Razorbill breeding population sizes used in population models for Forth Islands SPA.  
Values represent number of breeding pairs.  Counts of individuals were converted to pairs 
using k-values from the Isle of May (Harris et al. 2015b, updated).  Count type WCC = whole 
colony count.  Unrealistic k-values were recorded in 2005 so population counts were 
excluded. 
 

SPA Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Site Bass Rock Craigleith Fidra Isle of May The Lamb 

count type WCC WCC WCC WCC WCC 

1988  79 120 1903 26 

1989  74 91 2075 33 

1990  38 48 1508 21 

1991  70 79 1425 28 

1992  34 53 1909 30 

1993  41 44 2052 9 

1994  56 62 2227 26 

1995  79 59 3108 34 

1996 165 64 65 2989 64 

1997 138 66 81 2719 19 

1998   86 3126  

1999 71 114 147 3429 92 

2000 65 157 86 3105 68 

2001 111 111 72 3346 78 

2002 180 131 111 2844 90 

2003 64 117 63 2233 81 

2004 128 138 82 2677 85 

2005      

2006 169 175 123 2975 62 

2007 119 181 128 2735 77 

2008 85 147 95 2591 80 

2009 70 117 127 2400 70 

2010 63 136 123 2557 42 

2011 94 185 108 2705 70 

2012 106 157 70 3068 66 

2013 105 129 109 2879 59 

2014 124 110 170 2987 65 

2015 144 193 139 3202 46 

2016 91 186 122 3570 82 
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Table A1.5b 
 
Razorbill breeding population sizes used in population models for St Abbs Head to Fast 
Castle SPA and Fowsheugh SPA.  Values represent number of breeding pairs.  Counts of 
individuals were converted to pairs using k-values from the Isle of May (Harris et al. 2015b, 
updated). Count type WCC = whole colony count; PC = mean of plot means. 
 

SPA St Abbs to 
Fast Castle 

SPA 

St Abbs to 
Fast Castle 

SPA 

Fowlsheugh 
SPA 

Fowlsheugh 
SPA 

Site St Abb's Head St Abb's Head 
NNR 

Fowlsheugh Fowlsheugh 

count type WCC PC WCC PC 

1988 1343 21   

1989 1398 23   

1990 1072 18   

1991  29   

1992  24 6827  

1993 1187 21   

1994  25   

1995  29   

1996  23   

1997  33   

1998 1793 29   

1999  28 5808  

2000  30   

2001  26   

2002  32   

2003 1595 20   

2004  15  9 

2005  29   

2006  20 3341 20 

2007  21  19 

2008 1262 18   

2009  23 3696 18 

2010  18  14 

2011  24   

2012  23 4883 21 

2013 1269 22  14 

2014  20  18 

2015  16 5180 22 

2016  18  20 
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Table A1.6 
 
Shag breeding population sizes used in population models for each SPA. Values represent 
number of breeding pairs.  
 
SPA Forth 

Islands 
SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

Forth 
Islands 

SPA 

St Abbs to 
Fast 

Castle 
SPA 

Buchan 
Ness to 

Collieston 
Coast SPA 

Site Bass 
Rock 

Craig-
leith 

Fidra Inch-
mickery 

Isle of 
May 

The 
Lamb 

St Abb's 
Head NNR 

Boddam to 
Collieston 

1973  164 17  1076 244   

1974  225 27  933 255   

1975 180 214 25  644 233   

1976 213 201 20 8 497 210 187  

1977 201 186 18 12 921 156 193  

1978 202 208 23 14 769 143 134  

1979 188 215 25 14 966 160   

1980 191 198 25 11 1041 143   

1981 154 252 43 14 1163 220   

1982 194 344 59 22 1425  209  

1983 170 356 66 42 1567 283   

1984 193 379 64 22 1639 284   

1985 101 345 55 29 1524 303 268  

1986 75 388 67 24 1310 301 364 440 

1987 162 465 64 24 1916  396  

1988 93 435 86 24 1290 250 318  

1989 111 544 124 29 1703 286 366  

1990 121 522 116 28 1386 290 338  

1991  646 242 33 1487 305 463  

1992  665 255 36 1634 318 450  

1993 20 155 88 28 715 65 300  

1994 13 106 73 10 403 36 115  

1995  171 84 20 503 81 173 223 

1996 47 159 81 18 512 77 175  

1997 41 180 107 28 502 65 160  

1998   86 25 621  196  

1999 30 131 61 33 259 76 165  

2000 28 208 123 32 541 46 233  

2001 39 237 139 41 734 99 300 415 

2002 25 233 186 52 676 102 296  

2003 24 197 254 70 968 124 365  

2004 46 324 272 78 687 111 369 594 

2005 18 131 115 52 281 49 131  

2006 36 118 198 57 485 65 162  

2007 28 199 169 57 399 73 132 331 

2008 22 133 146 55 427 97 131  

2009 15 200 159 54 465 75 138  

2010 16 207 204 55 492 114 157  

2011 25 281 191 62 540 66 160  

2012 11 258 172 71 648 77 171  

2013 31 117 153 59 322 44 94 363 

2014 12 137 162 65 338 49 107  
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Appendix 2 

 

Ratio of Impacted to Un-Impacted 25 Year Population Growth Rate 

 

One possibility for the low sensitivity of PVA metric A (median of the ratio of 

impacted to un-impacted annual growth rate) is the scale of values, with all values 

being close to one, and, therefore, sensitivity potentially appearing low in a visual 

assessment even in cases where it is not.  However, here we consider a 25 year 

growth rate, where lines deviate markedly from 1 and sensitivity is more discernible. 

This analysis shows that low sensitivity is still apparent (Figure A2.1).  

 

 

Figure A2.1: PVA Metric A – ratio of 25 year population growth rate, comparing impacted 

population vs. un-impacted population, showing productivity mis-specification varied from -
50% to +50% (with 0% representing no mis-specification) in Forth Islands kittiwakes.  The 
five coloured lines represent the different levels of potential impact on annual adult survival. 
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Appendix 3 

 

PVA Metric Sensitivity for all Populations 

 

This Appendix presents graphical output of PVA metric sensitivity for the 13 

populations considered in this project.  For each species, the sequence of figures is 

as presented in Figure 4 of the main report for Forth Islands kittiwakes.  For 

completeness, we include Forth Islands kittiwakes here. 

 

In all figures, adult mortality mis-specification is illustrated in the upper panels and 

productivity mis-specification in the lower panels.  Mis-specification was varied from -

30% to +30% (with 0% representing no mis-specification).  The five coloured lines 

represent the different levels of potential impact on annual productivity (left panels) 

or annual adult survival (right panels) over the hypothetical 25 year lifetime of the 

wind farm (2017-2041). 

  



107 
 

1. Kittiwakes at Forth Islands SPA: 

 

Figure A2.1a: PVA Metric A for Forth Kittiwakes – ratio of population growth rate from 2016-
2041, comparing impacted population vs. un-impacted population. 
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Figure A2.1b: PVA Metric B for Forth Kittiwakes – ratio of population size at 2041, 
comparing impacted population vs. un-impacted population. 
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Figure A2.1c: PVA Metric C for Forth Kittiwakes – difference in population growth rate from 
2016-2041, comparing impacted population vs. un-impacted population. 
 

 
  



110 
 

Figure A2.1d: PVA Metric D for Forth Kittiwakes – difference in population size at 2041, 
comparing impacted population vs. un-impacted population. 
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Figure A2.1e: PVA Metric E1 for Forth Kittiwakes – probability of population decline greater 
than 10% from 2016-2041. 
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Figure A2.1f: PVA Metric E2 for Forth Kittiwakes – probability of population decline greater 
than 25% from 2016-2041. 
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Figure A2.1g: PVA Metric E3 for Forth Kittiwakes – probability of population decline greater 
than 50% from 2016-2041. 
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Figure A2.1h: PVA Metric F for Forth Kittiwakes – centile from un-impacted population size 
equal to the 50th centile of the impacted population size, at 2041. 
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2. Kittiwakes at St Abb’s Head SPA: 

 

Figure A2.2a. PVA Metric A for St Abb’s Kittiwakes – ratio of population growth rate from 
2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.2b. PVA Metric B for St Abb’s Kittiwakes – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.2c. PVA Metric C for St Abb’s Kittiwakes – difference in population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.2d. PVA Metric D for St Abb’s Kittiwakes – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.2e. PVA Metric E1 for St Abb’s Kittiwakes – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.2f. PVA Metric E2 for St Abb’s Kittiwakes – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.2g. PVA Metric E3 for St Abb’s Kittiwakes – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.2h. PVA Metric F for St Abb’s Kittiwakes – centile from un-impacted population 

size equal to the 50th centile of the impacted population size, at 2041. 
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3. Kittiwakes at Fowlsheugh SPA: 

 

Figure A2.3a. PVA Metric A for Fowlsheugh Kittiwakes – ratio of population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.3b. PVA Metric B for Fowlsheugh Kittiwakes – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.3c. PVA Metric C for Fowlsheugh Kittiwakes – difference in population growth 

rate from 2016-2041, comparing impacted population vs. un-impacted population. 

 

 
  



126 
 

Figure A2.3d. PVA Metric D for Fowlsheugh Kittiwakes – difference in population size at 

2041, comparing impacted population vs. un-impacted population. 

 

 
  



127 
 

Figure A2.3e. PVA Metric E1 for Fowlsheugh Kittiwakes – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.3f. PVA Metric E2 for Fowlsheugh Kittiwakes – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.3g. PVA Metric E3 for Fowlsheugh Kittiwakes – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.3h. PVA Metric F for Fowlsheugh Kittiwakes – centile from un-impacted 

population size equal to the 50th centile of the impacted population size, at 2041. 
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4. Kittiwakes at Buchan Ness to Collieston Coast SPA: 
 

Figure A2.4a. PVA Metric A for Buchan Ness Kittiwakes – ratio of population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.4b. PVA Metric B for Buchan Ness Kittiwakes – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.4c. PVA Metric C for Buchan Ness Kittiwakes – difference in population growth 

rate from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.4d. PVA Metric D for Buchan Ness Kittiwakes – difference in population size at 

2041, comparing impacted population vs. un-impacted population. 

 

 
  



135 
 

Figure A2.4e. PVA Metric E1 for Buchan Ness Kittiwakes – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.4f. PVA Metric E2 for Buchan Ness Kittiwakes – probability of population decline 

greater than 25% from 2016-2041. 

 

 
  



137 
 

Figure A2.4g. PVA Metric E3 for Buchan Ness Kittiwakes – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.4h. PVA Metric F for Buchan Ness Kittiwakes – centile from un-impacted 

population size equal to the 50th centile of the impacted population size, at 2041. 
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5. Guillemots at Forth Islands SPA: 

 

Figure A2.5a. PVA Metric A for Forth Guillemots – ratio of population growth rate from 2016-

2041, comparing impacted population vs. un-impacted population. 
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Figure A2.5b. PVA Metric B for Forth Guillemots – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.5c. PVA Metric C for Forth Guillemots – difference in population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.5d. PVA Metric D for Forth Guillemots – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.5e. PVA Metric E1 for Forth Guillemots – probability of population decline greater 

than 10% from 2016-2041. 
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Figure A2.5f. PVA Metric E2 for Forth Guillemots – probability of population decline greater 

than 25% from 2016-2041. 
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Figure A2.5g. PVA Metric E3 for Forth Guillemots – probability of population decline greater 

than 50% from 2016-2041. 
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Figure A2.5h. PVA Metric F for Forth Guillemots – centile from un-impacted population size 

equal to the 50th centile of the impacted population size, at 2041. 
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6. Guillemots at St Abb’s Head SPA: 

 

Figure A2.6a. PVA Metric A for St Abb’s Guillemots – ratio of population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.6b. PVA Metric B for St Abb’s Guillemots – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.6c. PVA Metric C for St Abb’s Guillemots – difference in population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.6d. PVA Metric D for St Abb’s Guillemots – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.6e. PVA Metric E1 for St Abb’s Guillemots – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.6f. PVA Metric E2 for St Abb’s Guillemots – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.6g. PVA Metric E3 for St Abb’s Guillemots – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.6h. PVA Metric F for St Abb’s Guillemots – centile from un-impacted population 

size equal to the 50th centile of the impacted population size, at 2041. 

 

 
  



155 
 

7. Guillemots at Fowlsheugh SPA: 

 

Figure A2.7a. PVA Metric A for Fowlsheugh Guillemots – ratio of population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.7b. PVA Metric B for Fowlsheugh Guillemots – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.7c. PVA Metric C for Fowlsheugh Guillemots – difference in population growth 

rate from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.7d. PVA Metric D for Fowlsheugh Guillemots – difference in population size at 

2041, comparing impacted population vs. un-impacted population. 
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Figure A2.7e. PVA Metric E1 for Fowlsheugh Guillemots – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.7f. PVA Metric E2 for Fowlsheugh Guillemots – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.7g. PVA Metric E3 for Fowlsheugh Guillemots – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.7h. PVA Metric F for Fowlsheugh Guillemots – centile from un-impacted 

population size equal to the 50th centile of the impacted population size, at 2041. 
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8. Guillemots at Buchan Ness to Collieston Coast SPA: 
 

Figure A2.8a. PVA Metric A for Buchan Ness Guillemots – ratio of population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.8b. PVA Metric B for Buchan Ness Guillemots – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.8c. PVA Metric C for Buchan Ness Guillemots – difference in population growth 

rate from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.8d. PVA Metric D for Buchan Ness Guillemots – difference in population size at 

2041, comparing impacted population vs. un-impacted population. 
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Figure A2.8e. PVA Metric E1 for Buchan Ness Guillemots – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.8f. PVA Metric E2 for Buchan Ness Guillemots – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.8g. PVA Metric E3 for Buchan Ness Guillemots – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.8h. PVA Metric F for Buchan Ness Guillemots – centile from un-impacted 

population size equal to the 50th centile of the impacted population size, at 2041. 
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9. Razorbills at Forth Islands SPA: 
 
Figure A2.9a. PVA Metric A for Forth Razorbills – ratio of population growth rate from 2016-

2041, comparing impacted population vs. un-impacted population. 
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Figure A2.9b. PVA Metric B for Forth Razorbills – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.9c. PVA Metric C for Forth Razorbills – difference in population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.9d. PVA Metric D for Forth Razorbills – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.9e. PVA Metric E1 for Forth Razorbills – probability of population decline greater 

than 10% from 2016-2041. 
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Figure A2.9f. PVA Metric E2 for Forth Razorbills – probability of population decline greater 

than 25% from 2016-2041. 
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Figure A2.9g. PVA Metric E3 for Forth Razorbills – probability of population decline greater 

than 50% from 2016-2041. 
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Figure A2.9h. PVA Metric F for Forth Razorbills – centile from un-impacted population size 

equal to the 50th centile of the impacted population size, at 2041. 
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10. Razorbills at St Abb’s Head SPA: 

 

Figure A2.10a. PVA Metric A for St Abb’s Razorbills – ratio of population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.10b. PVA Metric B for St Abb’s Razorbills – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.10c. PVA Metric C for St Abb’s Razorbills – difference in population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.10d. PVA Metric D for St Abb’s Razorbills – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.10e. PVA Metric E1 for St Abb’s Razorbills – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.10f. PVA Metric E2 for St Abb’s Razorbills – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.10g. PVA Metric E3 for St Abb’s Razorbills – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.10h. PVA Metric F for St Abb’s Razorbills – centile from un-impacted population 

size equal to the 50th centile of the impacted population size, at 2041. 
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11. Razorbills at Fowlsheugh SPA: 

 

Figure A2.11a. PVA Metric A for Fowlsheugh Razorbills – ratio of population growth rate 

from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.11b. PVA Metric B for Fowlsheugh Razorbills – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.11c. PVA Metric C for Fowlsheugh Razorbills – difference in population growth 

rate from 2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.11d. PVA Metric D for Fowlsheugh Razorbills – difference in population size at 

2041, comparing impacted population vs. un-impacted population. 
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Figure A2.11e. PVA Metric E1 for Fowlsheugh Razorbills – probability of population decline 

greater than 10% from 2016-2041. 
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Figure A2.11f. PVA Metric E2 for Fowlsheugh Razorbills – probability of population decline 

greater than 25% from 2016-2041. 
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Figure A2.11g. PVA Metric E3 for Fowlsheugh Razorbills – probability of population decline 

greater than 50% from 2016-2041. 
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Figure A2.11h. PVA Metric F for Fowlsheugh Razorbills – centile from un-impacted 

population size equal to the 50th centile of the impacted population size, at 2041. 
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12. Shags at Forth Islands SPA: 
 

Figure A2.12a. PVA Metric A for Forth Shags – ratio of population growth rate from 2016-

2041, comparing impacted population vs. un-impacted population. 
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Figure A2.12b. PVA Metric B for Forth Shags – ratio of population size at 2041, comparing 

impacted population vs. un-impacted population. 
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Figure A2.12c. PVA Metric C for Forth Shags – difference in population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.12d. PVA Metric D for Forth Shags – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.12e. PVA Metric E1 for Forth Shags – probability of population decline greater 

than 10% from 2016-2041. 
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Figure A2.12f. PVA Metric E2 for Forth Shags – probability of population decline greater 

than 25% from 2016-2041. 
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Figure A2.12g. PVA Metric E3 for Forth Shags – probability of population decline greater 

than 50% from 2016-2041. 
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Figure A2.12h. PVA Metric F for Forth Shags – centile from un-impacted population size 

equal to the 50th centile of the impacted population size, at 2041. 
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13. Shags at St Abb’s Head SPA: 
 

Figure A2.13a. PVA Metric A for St Abb’s Shags – ratio of population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.13b. PVA Metric B for St Abb’s Shags – ratio of population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.13c. PVA Metric C for St Abb’s Shags – difference in population growth rate from 

2016-2041, comparing impacted population vs. un-impacted population. 
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Figure A2.13d. PVA Metric D for St Abb’s Shags – difference in population size at 2041, 

comparing impacted population vs. un-impacted population. 
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Figure A2.13e. PVA Metric E1 for St Abb’s Shags – probability of population decline greater 

than 10% from 2016-2041. 
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Figure A2.13f. PVA Metric E2 for St Abb’s Shags – probability of population decline greater 

than 25% from 2016-2041. 
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Figure A2.13g. PVA Metric E3 for St Abb’s Shags – probability of population decline greater 

than 50% from 2016-2041. 
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Figure A2.13h. PVA Metric F for St Abb’s Shags – centile from un-impacted population size 

equal to the 50th centile of the impacted population size, at 2041. 
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