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Executive summary  

 

Estimation of Scotland’s Atlantic salmon stocks is a key component of national 

and international management and requires information on rod catches. During 

2020 rod fisheries were adversely impacted by restrictions associated with the 

COVID-19 pandemic. Without accounting for reduced fishing effort, stock 

abundance may be underestimated due to lower-than-expected catch. 

 

Two complimentary approaches to account for lower-than-expected catches on 

stock estimates were developed and presented to the Working Group on North 

Atlantic Salmon in March 2021. The first approach uses historic catches to 

estimate expected-catches for the affected months in 2020. This simple approach 

captures the within year pattern of catches and allows overall catches to vary 

between years. The second approach was based on estimating expected-catch 

by first modelling a “corrected effort” that would have been expected in the 

absence of restrictions and then converting this to expected-catch using a model 

of monthly catch per unit effort. The choice of which model to apply to each of the 

173 assessment areas used for national management was made by comparing 

model fits for the 2019 season. There was a fairly even balance between the 

number of areas that were favoured by the two overall approaches. 

 

Applying a COVID-correction to catches increases the whole-of-Scotland stock 

estimate by approximately 22%, although the degree of correction differed 

between different assessment areas depending on area-specific catch and effort 

data. Although it is not possible to fully account for the complexity of the 

pandemic and it’s impact on rod fishing the methods described allow the impact 

of the COVID-19 pandemic to be accounted for in stock assessments. 
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Introduction 
 

The COVID-19 pandemic severely impacted Atlantic salmon (Salmo salar) 

fisheries in Scotland over the 2020 season. While fishing was specifically allowed 

as a non-contact, outdoor activity, stay-at-home orders along with subsequent 

restrictions on national and international travel disrupted access to, and the 

business of, salmon fishing. In 2019, Marine Scotland began collecting 

information on fishing effort from salmon fisheries, in addition to catch statistics. 

These data showed a clear reduction in fishing effort in the spring/early summer 

season of 2020 compared to 2019 (Fig.1). This decrease in effort may ultimately 

have led to lower-than-expected catches and makes comparisons of catches with 

previous years challenging. 

  

 

Figure 1: Wild Atlantic salmon angling effort (rod days) in Scottish rivers, 2019 
and 2020. Rod days are the number of rods fished each day, regardless of the 
amount of time spent fishing each day. 
 

Atlantic salmon stock abundance estimation is undertaken in Scotland to guide 

both national- and international-level management. At the national level, the 

Conservation of Salmon (Scotland) Regulations 2016 require mandatory catch 

and release of salmon in areas which fall below their defined conservation limit 
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following an assessment of the stock. Assessment is undertaken at the scale of 

the river, or on groups of smaller neighbouring rivers where rod fishery data is not 

yet available by river (hereafter, ‘assessment areas’). In international 

assessments, pre-fishery abundance of salmon stocks are estimated using 

information on in-river abundance aggregated to a regional level (East and West 

Scotland). These estimates are compared with nationally-derived conservation 

limits in the provision of catch options and advice for two high seas fisheries in 

the North Atlantic (ICES, 2021). Both assessments rely on the estimation of in-

river abundance. 

 

In-river abundance estimates for Scotland are mainly derived from monthly 

reported rod catches, which are scaled up using information from fish counters 

on a selection of catchments. The process also accounts for changes in river flow 

which may impact on angling conditions and ability to catch salmon (Anon., 

2019). The reduction in fishing effort as a result of the COVID-19 pandemic, and 

subsequent potential reduction in reported rod catch, therefore presented a 

particular challenge to stock estimation for the 2020 season. Without accounting 

for reduced fishing effort, stock abundance may be underestimated due to lower-

than-expected catch. 

 

In a ‘normal year’, fishery-independent information on the abundance of salmon 

such as counts of fish passing over counters in selected catchments could be 

used to account for reduced fishing effort. However, due to unforeseen 

circumstances, accurate counter data was not available for the majority of those 

catchments normally included in the assessment process in 2020. It was 

therefore necessary to estimate an ‘expected-catch’ value as the catch of salmon 

expected in the absence of COVID-19 restrictions. Expected-catch estimates 

(with associated uncertainty) then provide input to the abundance modelling 

process. 

 

Restrictions impacting fishing effort were not consistent across the salmon 

angling season. Stay-at-home orders were issued in March; travel (for leisure or 

exercise) was restricted to local travel only (5 miles from place of residence) from 

late May until July. In November, Scotland entered another period of emergency 

measures, with domestic travel restrictions dependent on the development of the 

COVID-19 pandemic in local areas.  The months for which it was necessary to 



4 

 

estimate an expected-catch value were therefore March, April, May, June and 

November. 

 

Two approaches were developed for estimating expected-catch in 2020. These 

were presented to the Working Group on North Atlantic Salmon in March 2021 in 

respect of international assessments (ICES, 2021) and further refined in April-

May 2021 in respect of national assessments. The first approach considered that 

in areas where there is a large amount of historic data on salmon catches and 

where the seasonal pattern of catch is consistent (Fig. 2A), this information could 

be used to estimated expected-catches for the affected months in 2020. This 

simple approach captures the within year pattern of catches and allows overall 

catches to vary between years. 

 

 

Figure 2: Examples of monthly catches from the period 2011-2019 from 
assessment areas with (A.) a consistent seasonal pattern and (B.) an 
inconsistent seasonal pattern of catches over multiple years. Grey lines show 
annual data, with the black line highlighting the mean monthly catch over this 
time period. 
 

In many assessment areas in Scotland, salmon catch data is sparse and/or less 

consistent (Fig. 2B). However, catch is necessarily related to the amount of 

angling effort and as a result effort data can be used as an alternative means to 

model expected-catch. A second approach was developed which exploited 

patterns in catch per unit effort (CPUE). This method was based on estimating 
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expected-catch by first modelling an ‘expected-effort’ value that would have been 

observed in the absence of restrictions and then converting this to expected-

catch using a model of monthly catch per unit effort (CPUE). 

 

The aim of the present analysis was to identify an appropriate method for 

estimating expected-catch for the 2020 salmon angling season within individual 

assessment areas in Scotland. The ultimate aim was to produce more accurate 

stock estimates which form the basis of conservation assessments and 

management of salmon stocks. 

 

 

Methods 

 

Data 

 

The number of rod-caught salmon in Scotland have been collected since 1952 

using a survey of fisheries, with approximately 2000 forms sent out in recent 

years. Each fishery is obliged to return monthly catches of salmon and since 

2019 fisheries have also been asked to provide the number of rod days fished 

per month as a measure of effort. Traditionally catches were collected at the 

fishery district level, where a district could contain multiple rivers. Data collected 

since 2011 are also available at a finer geographic scale which comprises the 

assessment areas as defined in the Conservation of Salmon (Scotland) 

Regulations 2016. 

 

For each assessment area monthly catch data was available for the period 2011-

2020, with effort data being available for 2019 and 2020. Effort data was provided 

on 84% of forms in 2019 and 83% of forms in 2020. In order to estimate effort 

across a whole assessment area, it was necessary in some assessment areas to 

scale effort up to account for those fisheries which did not return information. This 

was done by assuming that the relationship between catch and effort was the 

same for all fisheries within the assessment area: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 ×
𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝑒𝑓𝑓𝑜𝑟𝑡
 

 

Where 𝐸𝑡𝑜𝑡𝑎𝑙 is total effort in rod days across the whole assessment area, 

𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 is effort in rod days reported for a portion of the assessment area, 𝐶𝑡𝑜𝑡𝑎𝑙 
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is total catch reported across the whole assessment area and 𝐶𝑒𝑓𝑓𝑜𝑟𝑡 is catch 

reported across those fisheries that also reported effort within the assessment 

area. 

 

In total there was effort data from 165 areas, including 8 areas where there were 

not enough years of catch data to allow a full conservation assessment to be 

undertaken (non-assessment areas). These non-assessment areas were 

included in the modelling. Catch data was available for all 173 assessment areas, 

with the catch modelling being undertaken on these rivers. 

 

Information on historic catches was used as a predictor when modelling catch 

and effort, on the assumption that past catch levels would be a good predictor of 

the catches in a given year/month/area combination. Historic catch was defined 

as the mean of monthly catches over the 5 preceding years for each assessment 

area. This was available for all 173 assessment areas using monthly data from 

2016 to 2020 (2016 being the first year of data that had the required 5 preceding 

years to produce the historic catch metric used). 

 

Wetted area available to salmon was used as a predictor when modelling CPUE. 

The reported salmon distribution was used to determine appropriate wetted areas 

for each assessment area (Gardiner and Egglishaw, 1986 and subsequent 

updates). This provided information on areas where salmon were present, absent 

and unknown. Wetted areas were calculated from OS MasterMap using ESRI 

ArcGIS software. For each assessment area wetted area was restricted to fluvial 

habitat and was assumed to be the salmon present area plus half of the unknown 

habitat. 

 

Modelling Process 

 

The method for estimating expected-catch is comprised of two different 

approaches; one based on historic catch and one based on CPUE (Fig. 3). 

The approach based on historic catch information requires a single statistical 

model, hereafter 𝑀𝐻𝐶. The approach based on CPUE requires two statistical 

models; a model of CPUE, hereafter 𝑀𝐶𝑃𝑈𝐸 and a model of expected-effort, 

hereafter 𝑀𝐸. 
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For both approaches predictions of expected-catch in 2019 and 2020 were 

generated. The predictions for 2019 were used to select between the approaches 

on an assessment area basis. The criteria for selecting one approach over 

another was based on the agreement of the predictions with the observed 

catches for a given assessment area during the COVID-19 impacted months in 

2019 (i.e. March, April, May, June and November). The 2020 predictions from the 

selected approach for each assessment area were ultimately used in the stock 

estimate. 

 

Figure 3: Flow diagram of the modelling process used to derive a COVID-19 
adjusted stock estimate. Dotted lines indicate where a selected model was used 
to generate predicted expected-catch values.  
 

 

Statistical model structure 

 

In order to properly propagate uncertainty through the modelling process and into 

the stock estimation 𝑀𝐻𝐶, 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐸 were modelled within a Bayesian 

framework. All assessment areas for which data were available were considered 

simultaneously in each model in a hierarchical structure, facilitating the pooling of 

information across assessment areas when estimating parameters to aid in 

prediction. 
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The distributions of monthly catches and monthly effort across all assessment 

areas are highly skewed and zero inflated (Fig. 4). To account for this 𝑀𝐻𝐶, 

𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐸 were hurdle log-normal regression models. 

 

In a hurdle log-normal regression model, the data generation process is assumed 

to comprise of two components. First, a zero outcome may occur with some 

probability as a result of a process captured by a set of covariates. This 

component is modelled as a logistic regression. Second, if a zero outcome did 

not occur in the first step (the hurdle is passed) then a non-zero outcome is 

realised resulting from a separate process captured by an additional set of 

covariates. This second component is modelled as a log-normal regression. 

 

 

Figure 4: Plot showing the relationship between the historic catch and A. catch 
and B. effort. Note that axes are log transformed. Points on the y axis surrounded 
by a grey diamond indicate where historic catches were 0. Those on the x axis 
highlight where catches/effort were 0.  
 

In addition, due to heteroscedasticity in the relationships between catch and 

historic catch, and effort and historic catch (Fig. 4), the error term in the non-zero 

components of each model were allowed to vary. 

 

All three models, 𝑀𝐻𝐶, 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐸 had the same underlying model structure 

differing only in the choice of covariates and, in the case of 𝑀𝐸, the response 

variable. Specifically, 𝑀𝐻𝐶 and 𝑀𝐶𝑃𝑈𝐸 were modelled as follows: 
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𝑃(𝑌 = 𝑦𝑖,𝑗) = {
𝜋𝑖,𝑗, 𝑦𝑖,𝑗 = 0

(1 − 𝜋𝑖,𝑗)𝜙𝑖,𝑗, 𝑦𝑖,𝑗 > 0

logit(𝜋𝑖,𝑗) = 𝛼𝑊𝑖,𝑗 + 𝜂𝑗

𝜙𝑖,𝑗 = 𝑒𝛽𝑋𝑖,𝑗+𝛾𝑗+𝜖𝑖,𝑗

𝛾𝑗 ∼ 𝑁(0, 𝜎𝛾)

𝜂𝑗 ∼ 𝑁(0, 𝜎𝜂)

𝜖𝑖,𝑗 ∼ 𝑁(0, 𝜎𝑍𝑖,𝑗 + 𝛿𝑗)

𝛿𝑗 ∼ 𝑁(0, 𝜎𝛿)

  (Equations 1) 

 

where 𝑃(𝑌 = 𝑦𝑖,𝑗) is the probability of monthly catch 𝑖 from assessment area 𝑗, 

𝑋𝑖,𝑗 and 𝑊𝑖,𝑗 are the covariates for the non-zero and zero catch components 

respectively with associated coefficient vectors 𝛽 and 𝛼. Parameters 𝛾𝑗 and 𝜂𝑗 

are assessment area-specific terms with a normally-distributed group structure 

with associated standard deviations 𝜎𝛾 and 𝜎𝜂. Finally, 𝑍𝑖,𝑗 is are the covariates 

for the variance in the non-zero catch component with corresponding coefficient 

vector 𝜎 and assessment area-specific parameters 𝛿𝑗 with a normally-distributed 

hierarchical structure with associated standard deviation 𝜎𝛿. 

 

Model 𝑀𝐸 was identical to Equations (1) with the exception that the response 

variable 𝑦𝑖,𝑗 is the probability of monthly effort 𝑖 from assessment area 𝑗. 

To mitigate against over-fitting through the non-constant error term 𝜖𝑖,𝑗, variants 

of 𝑀𝐻𝐶 and 𝑀𝐶𝑃𝑈𝐸 (𝑀𝐻𝐶∗ and 𝑀𝐶𝑃𝑈𝐸∗) with fixed variance were included in the 

model assignment process. For both models, 𝜖𝑖,𝑗 was replaced with 𝜖𝑖,𝑗
∗  defined 

as: 

𝜖𝑖,𝑗
∗ ∼ 𝑁(0, 𝜎∗) 

 

 

Modelling expected catch using historical catch information 

 

Catches of salmon vary among months, years and assessment areas, with 

monthly catches ranging from 0 to 4530 during 2011-2019. However, they do not 

vary randomly and there are underlying within year patterns shown by different 

assessment areas (e.g. Fig. 2A). 

 

To reflect this, in 𝑀𝐻𝐶 and 𝑀𝐻𝐶∗ the non-zero catch covariates and associated 

coefficients, 𝛽𝑋𝑖,𝑗, included (log) historic catch, month and year, whilst the zero 
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catch covariates and associated coefficients, 𝛼𝑊𝑖,𝑗, included an intercept and 

(log) historical catches. The covariates and associated coefficients for the 

variance, 𝜎𝑍𝑖,𝑗 in 𝑀𝐻𝐶, included an intercept and (log) historic catches. 

 

The data used in fitting 𝑀𝐻𝐶 and 𝑀𝐻𝐶∗ covered 2016 to 2020, though importantly 

the months in 2020 in which restrictions were in place were omitted. The historic 

catches covariate was specific to the year, for example spanning 2014 - 2018 for 

2019 catches, 2015 - 2019 for 2020 catches and so on. This allows the 

information on recent changes in catches in a specific assessment area to inform 

the fit. The inclusion of a year term also allows the model to capture any national-

level difference in catches between 2019 and 2020 based on observed catches 

in 2020 when restrictions were not in place. 

 

With this combination of covariates and data, a fitted model facilitates a straight 

forward prediction of out-of-sample expected-catches for the omitted months in 

2020. Within sample predictions for 2019 were similarly generated for the model 

selection process. 

 

Modelling total effort 

 

To model effort, 𝑀𝐸 was constructed with the same covariates and data structure 

as 𝑀𝐻𝐶. The fitted model was used to generate samples of the posterior 

predicted effort for both 2019 and 2020, which were used as new input values 

when predicting expected-catch from 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸
∗ . 

 

Modelling expected catch using CPUE 

 

In order to model expected catch using CPUE, 𝑋𝑖,𝑗 for 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸∗ included 

(log) effort with the corresponding 𝛽 fixed to 1. Using this formulation 𝜙𝑖,𝑗 can be 

rewritten for 𝑀𝐶𝑃𝑈𝐸 as: 

𝜙𝑖,𝑗 = 𝐸𝑖,𝑗𝑒𝛽𝑋𝑖,𝑗+𝛾𝑗+𝜖𝑖,𝑗 

 

where 𝐸𝑖,𝑗 is the effort for month 𝑖 of assessment area 𝑗. A similar adjustment can 

be made for 𝑀𝐶𝑃𝑈𝐸∗. In this form, all parameter estimates for the non-zero catch 

component are effectively fit against catch directly scaled by effort. 
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CPUE is often assumed to to be an indicator of abundance and so is likely to 

vary with the size of the assessment area and over the course of the adult 

salmon run. CPUE is also likely to be non-linear; catch efficiency will decline as 

the population is exploited, even with substantial catch and release. 

 

Consequently, for 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸∗, the non-zero and zero catch covariates and 

associated coefficients, 𝛽𝑋𝑖,𝑗 and 𝛼𝑊𝑖,𝑗, included an intercept term, month, (log) 

wetted area and (log) effort. For 𝑀𝐶𝑃𝑈𝐸 the structure on variance, 𝜎𝑍𝑖,𝑗 included 

an intercept term and (log) effort. 

 

The data used to fit 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸∗ encompassed all months in 2019 and 

2020 for which data was available, including the months in which restrictions 

were in place. Implicit in this is the assumption that CPUE itself was not affected 

by restrictions, rather simply that effort was reduced; though the inclusion of (log) 

effort as a covariate allows the model to capture the way in which CPUE scales 

with effort itself. As a consequence, a predicted increase in effort in 2020 does 

not necessitate a corresponding linear increase in catch. In contrast to the 

historic catch approach, the CPUE model is thus able to incorporate information 

from catches in 2020 when restrictions were in place. 

 

When predicting catch for 2019 and 2020, a Monte Carlo process was used, with 

each sample of the posterior prediction of expected-catch using a different 

sample from the posterior predictions of effort from 𝑀𝐸, thus incorporating the 

uncertainty in 𝑀𝐸. In the scenario that the sampled predicted effort was lower 

than the reported effort, the reported effort value was used. 

 

Priors 

 

With the exceptions detailed below, default priors as specified in the R package 

brms (Bürkner 2017, 2018) were used for all parameters for all models. These 

priors are relative to a design matrix centered around the mean. The priors on the 

intercept parameters in the non-zero catch / effort components were Student-t 

distributions with three degrees of freedom, a location of 1.6, and scale 3.1. The 

priors on the intercept parameters of the zero catch/effort components were 

logistic distributions with mean 0 and scale 1. The priors for all variance 

parameters, including the assessment area group level standard deviations were 

half Student-t distributions with 3 degrees of freedom, location 0 and scale 3.1. 
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Individual assessment area parameters were standard normal priors. All other 

priors were unconstrained. 

 

For 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸∗, it was necessary to introduce a standard normal prior on 

the coefficients of month in the zero catch component, as the relatively low 

number of data points for November lead to difficulties when fitting. The added 

constraint of the normal prior resolved this issue. 

 

MCMC sampling 

 

All models were fit using brms package version 2.14 (Bürkner 2017, 2018) in R 

version 3.6 (R Core Team 2020). All models were run for at least 2000 warm up 

iterations and at least 4000 post warm up iterations across at least 4 chains, 

resulting in at least 10 000 posterior samples. 

 

Trace plots were examined to ensure convergence, and for all models Rhat < 

1.01, and the bulk and tail effective sample size > 1000 for all parameters. 

 

Model selection 

 

It was expected that the different modelling approaches would be more 

applicable for some assessment areas than others. In order to select the most 

appropriate model when generating predictions of expected-catch in 2020, for 

each assessment area a model was selected based on the performance of the 

model when predicting catch in 2019 for that area. 

 

The predictive performance of each model for assessment area 𝑗 was quantified 

using the log pointwise predictive density, 𝑙𝑝𝑝𝑑 (Gelman et al. 2014), given the 

observed catches for that area in 2019, 𝑦𝑖,𝑗. Given 𝑆 samples of the posterior 

distribution, 𝜃, of each model, 𝑙𝑝𝑝𝑑𝑗 is calculated as: 

 

𝑙𝑝𝑝𝑑𝑗 = ∑ log

𝑖∈𝑁

(
1

𝑆
∑ 𝑝

𝑆

𝑠=1

(𝑦𝑖,𝑗|𝜃𝑠)) 

 

where 𝑁 is the set of data points in 2019 corresponding to the months in which 

restrictions were in place in 2020. This ensures that the models are assessed 
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based on their predictive performance in the months that are required for the 

prediction of expected-catch. 

 

The model with the highest 𝑙𝑝𝑝𝑑𝑗 was used when predicting expected-catch in 

2020. 

 

Impact on stock estimates 

 

Stock assessments were run in order to determine the impact of correcting for 

the disruption caused by the COVID-19 pandemic. The normal stock assessment 

process (Anon 2019) was run using the reported catches and the expected-

catches produced using the model with the highest 𝑙𝑝𝑝𝑑𝑗. The stock model takes 

a Monte Carlo approach, where 10 000 draws are taken to account for 

uncertainly in the correction factor used to convert catches to stock. This process 

was expanded to account for uncertainly in the expected catches during the 

COVID-19 impacted months (drawing both catch and expected-catch from a 

distribution rather than just the correction factor). Comparisons were then made 

between the estimated stock using the reported and expected-catch inputs. 

 

 

Results 

 

Model assignment 

 

Each of the four different models were found to have the best predictive 

performance for some of the assessment areas (Table 1). Examples of these are 

shown in Figure 5. These graphs illustrate that, in general, the predictions for the 

different models were often very similar, particularly for 𝑀𝐶𝑃𝑈𝐸 / 𝑀𝐶𝑃𝑈𝐸∗ and 𝑀𝐻𝐶 / 

𝑀𝐻𝐶∗. There were occasions where models 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸∗ produced better 

fits than models 𝑀𝐻𝐶 and 𝑀𝐻𝐶∗ (e.g. River Oykel SAC in April) and vice versa 

(e.g. Wick River in June). There were also months when all models performed 

relatively well (e.g. River Oykel SAC in June) and occasions where they were all 

relatively poor (e.g. River Oykel SAC in May). 
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Figure 5: Comparisons of posterior predictions of the catch in 2019 from the four models 
in four assessment areas. The title of each panel indicates the assigned model for that 
assessment area. Points give true catch, boxplots show median prediction and 50% and 
90% CIs and numeric values indicate the log predictive density for that data point. Note 
that there is no November fishing in any of the four areas. 
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Table 1: Number of assessment areas assigned to each model, based on log 
pointwise predictive density of catch in relevant months of 2019. 
 

Assigned Model Number of Assessment Areas 

𝑀𝐻𝐶∗ 47 

𝑀𝐻𝐶 52 

𝑀𝐶𝑃𝑈𝐸∗ 51 

𝑀𝐶𝑃𝑈𝐸 39 

 

The assignment of assessment areas to the four different models was relatively 

even, with no single model providing the best predictive performance (Table 1). 

In general, larger areas were best predicted by models 𝑀𝐻𝐶 and 𝑀𝐻𝐶∗, whilst 

smaller areas were best predicted by models 𝑀𝐶𝑃𝑈𝐸 and 𝑀𝐶𝑃𝑈𝐸∗ (Fig. 6). 

Additionally, models which allowed for a non-constant residual variation 𝑀𝐶𝑃𝑈𝐸 

and 𝑀𝐻𝐶, generally had better predictive performance for larger areas. This was a 

result of the fixed variance models 𝑀𝐶𝑃𝑈𝐸∗ and 𝑀𝐻𝐶∗ overestimating the 

uncertainty for large catches (e.g. catches in June for River Oykel SAC and River 

Ness in Figure 5). 

 

Figure 6: Distribution of wetted area for assessment areas assigned to each 
model, based on log pointwise predictive density of catch in relevant months in 
2019. 
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Impact on stock estimates 

 

At an overall Scotland level the estimated annual stock increased by a median 

value of 22% (Fig. 7). The uncertainly around the estimated increase is a 

reflection of the uncertainty around the expected catch values (e.g. Fig. 5). 

 

The impact of the correction varied by both month and assessment area (Fig. 8). 

Although there is variation among assessment areas, it is clear that the 

correction has a bigger impact during April and May than in other months, 

particularly June and November. This mirrors the overall picture provided by the 

effort data (Fig. 1) and is driven by the timing and severity of the lockdown 

restrictions. Figure 8 also highlights that using the corrections presented here 

allows stock estimates to be produced even in the absence of fishing. 

 

 

 

 

 

Figure 7: Histogram showing the percentage increase in the all-Scotland salmon 
stock level due to using the expected rather than reported catch, over 10 000 
Monte Carlo samples. 
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Figure 8: Plot showing the monthly median estimates of corrected and 

uncorrected stock estimates for the assessment areas (log transformed). The 

diagonal line indicates the 1:1 line where the two estimates are the same. Points 

on the y axis surrounded by a grey diamond indicate where uncorrected 

estimates are 0. 

 

Alternate model assignments using WAIC 

 

The 𝑙𝑝𝑝𝑑 is an overestimate of the expected 𝑙𝑝𝑝𝑑 for unobserved, out-of-sample 

data (Gelman et al. 2014). Predictive information criteria which include some 

form of penalisation term on the flexibility of the model (e.g. an estimate of the 

effective number of parameters) such as the WAIC (Watanabe 2010) are 

frequently used to address this issue. To test the potential impact of over fitting 

when using the 𝑙𝑝𝑝𝑑 to assign models to assessment areas, expected-catch 

predictions were reassigned with the inclusion of the WAIC penalisation term 

(following Gelman et al. 2014); 

𝑝𝑊𝐴𝐼𝐶,𝑗 = ∑ 𝑉𝑠=1
𝑆

𝑖∈𝑁

(log(𝑝(𝑦𝑖,𝑗|𝜃𝑠)) 

where 𝑉𝑠=1
𝑆  is the sample variance defined as: 
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𝑉𝑠=1
𝑆 (𝑎𝑠) =

1

𝑆 − 1
∑(

𝑆

𝑠=1

𝑎𝑠 − 𝑎)2. 

 

The resulting measure of expected predictive performance for assessment area 𝑗 

for each model was then given by: 

 

𝑒𝑙𝑝𝑝𝑑̂𝑊𝐴𝐼𝐶,𝑗 = 𝑙𝑝𝑝𝑑𝑗 − 𝑝𝑊𝐴𝐼𝐶,𝑗 

 

The result of the inclusion of this intercept term ultimately lead to some 

assessment areas being assigned a different model. However, in these cases the 

predicted catches were very similar across the models and the resultant impact 

on the stock estimate was negligible. 

 

 

Discussion 

 

The results of the modelling presented here highlights that failing to correct for 

the impact of the COVID pandemic will underestimate the total Scottish salmon 

stock by approximately 22%. Therefore, not accounting for the unusual 2020 

angling season has the potential to impact management actions based on 

artificially low stock assessments. 

 

The impact of the pandemic was shown to vary among assessment areas. Some 

areas do not report catches until later in the year, coinciding with their returns of 

salmon, and they may have been relatively unaffected by a lockdown centred in 

April and May. In addition, the degree of impact among areas is likely to differ 

depending on how badly fishing in each area was impacted by a reduction in 

travel. This will depend on a number of factors including the balance between 

local and visiting anglers. By design, the models are flexible enough to allow the 

estimated impact of COVID-19 to differ among assessments areas. Such 

differences are based on the reported data from each assessment area and 

account for among area differences in recent catch trends and differences in the 

seasonality of catch and effort. 

 

The comparison of different modelling approaches presented here highlights the 

variability in the consistency of catches from year to year across assessment 
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areas in Scotland. For many areas, information on historic catches was a reliable 

predictor of future catches, whilst for other areas a more nuanced model, taking 

into account the relationship between catch and effort, was required. The effort 

approach has a number of theoretical advantages over the use of historic catch 

data. Two key advantages being: firstly it is effort that is directly impacted by 

lockdown measures. Secondally, unlike using historic catches, the models 

contain data from COVID-19 impacted months, with CPUE relating directly to the 

stock in those months. However, effort data is only available for two years, 

compared to the five used for the historic catch model, and only for ~83% of 

fisheries where catches were reported. It is likely that the utility of effort data will 

increase as coverage increases and more years of data become available. 

 

Despite the flexibilities built into the modelling approach it is not possible to 

account for the full geographic and temporal complexity of the pandemic on 

fisheries. With a fully working fish counter network it would be possible to 

investigate how the relationship between catches and stocks deviated from the 

usual patterns and use this information to directly estimate stock levels. However, 

until such a network is available such corrections will have to rely on the available 

data, namely catches and effort. Despite their limitations the methods described 

enable the impact of the COVID-19 pandemic to be accounted for in stock 

assessments 
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