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Executive summary 

 

1) The Scottish Government has set a target of 100% of Scottish demand for 

electricity to be met by renewable sources by 2020. The marine environment 

offers considerable potential with respect to harvesting renewable energy, 

through wind, wave and tidal stream energy generators. However, offshore 

renewable developments have the potential to impact on seabird populations. 

 

2) Population Viability Analysis (PVA) is considered best practice in order to 

understand the population-level consequences of predicted impacts from 

renewable energy developments on seabirds. If inappropriate PVA methods 

are used, then there is a risk that assessments become protracted, standards 

of assessment vary, and decision-making uncertainty increases; this in turn 

can increase risk and reduce confidence that consent decisions are made in a 

timely manner. There is, therefore, considerable need to provide clear 

guidance on which PVA approaches should be used in each circumstance. 

 

3) Within this project, we evaluated and compared the performance of a range of 

different modelling methods for PVAs that have been used in practice. We 

evaluated the performance of the methods in producing accurate predictions 

of future “baseline” abundance – i.e., abundance in the absence of an 

offshore wind farm. PVAs are typically summarised, in the context of offshore 

renewables, in terms of metrics that compare scenarios of impact against a 

“baseline” projection of abundance. Caution should, therefore, be taken in 

relating the results of our evaluation (which is concerned with absolute 

abundance) directly to the ability of methods to produce accurate values of 

PVA metrics (which are often concerned with comparing relative abundance 

under different scenarios). However, we nonetheless expect the results of our 

evaluation to provide a useful qualitative guide to the relative strengths and 

limitations of different methods. 

 

4) At the national scale, we compared deterministic and stochastic Leslie matrix 

models (which are usually used in practice for PVAs) against each other, and 

against a range of simple time series growth models. We applied these 

methods to data on abundance, breeding success and survival for 15 seabird 

species, for breeding colonies throughout the British Isles. We evaluated 

performance by applying the methods to abundance and demographic data, 

with these split in to a training period and a subsequent “test” period, 

assessing whether the predictions that the methods generated for the “test” 

period were consistent with the observed counts of abundance for that period. 
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We considered four possible definitions of the test period – 1998-2017, 2003-

2017, 2008-2017 and 2013-2017 – and in each case considered the training 

period to be all years (with suitable available population data) prior to this.   

 

5) In one region (Forth/Tay), for five species, we also used a five year test period 

(2013-2017) to compared this suite of approaches against the Semi-

Integrated Population Models (SIPMs) produced by Freeman et al. (2014) and 

Jitlal et al. (2017) (termed Bayesian State Space Models in those reports).  

 

6) We assessed performance of methods by looking at: a) whether the method 

was possible to apply; b) how frequently it yielded “highly implausible” results 

(i.e., results that are more than 100 times larger or smaller than the actual 

abundance); c) whether it produced systematically biased results (i.e. over-

estimated or under-estimated actual abundance); d) how much error the 

methods had, on average, in predicting the observed count; e) whether the 

method provided an accurate quantification of uncertainty; f) the level of 

uncertainty associated with each method and g) the computational time 

required to implement the method. 

 

7) The results of the comparisons are inconsistent, suggesting there is no simple 

hierarchy of performance between different models – the results vary 

depending upon the species and colony being considered, and vary between 

the different possible criteria that can be used for assessing performance. 

Some consistent patterns do emerge, however. One key finding to emerge 

from our comparisons is that deterministic and stochastic Leslie matrix 

approaches frequently perform relatively poorly, compared to time series 

models (and, where evaluated, SIPMs), in terms of the accuracy of the 

predictions produced. This is likely to reflect known differences in data 

coverage in the UK, as well as inherent differences between the methods. 

Data on adult and immature survival rates are very limited, whereas data on 

abundance are much more widely available. This makes it is unsurprising that 

methods that use abundance data (time series models, SIPMs) frequently 

produce more accurate predictions of absolute abundance than methods that 

do not (Leslie matrix approaches). 

 

8) The second key finding to emerge from our comparisons is that stochastic 

Leslie matrix approaches that only use demographic data systematically 

underestimate uncertainty. The frequency with which 95% confidence 

intervals contained observed counts was consistently much lower than 95% 

for these approaches. This is a more surprising finding, but we think this result 
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is likely to occur because the stochastic Leslie matrix models that are 

currently used in PVAs relating to seabirds make a biologically implausible 

assumption of independence of demographic rates (between different rates 

and different years), and also usually fail to account for uncertainty in rates, 

even when they do account for environmental variation in rates. 

 

9) On the basis of these empirical results we recommend that the outputs 

obtained from Leslie matrix models that only use demographic data should be 

interpreted with caution. One useful method of improving the performance of 

Leslie matrix models in situations where abundance data exist is to validate 

predictions produced by the Leslie matrix approaches against these data. We 

recommend that “tuning” of this kind is undertaken, using automated 

approaches. We also recommend, on the basis of our results, that current 

estimates of uncertainty in absolute abundance from stochastic Leslie matrix 

models, should be regarded as underestimates, and interpreted accordingly. 

We believe that work is needed (a) to establish whether the underestimation 

of uncertainty in absolute abundance also leads to underestimation of 

uncertainty in PVA metrics, and (b) to improve the representation of 

uncertainty within Leslie matrix models used in seabird PVAs by quantifying 

and exploiting correlations within and between demographic rates. 

 

10) We conclude by providing general guidelines on the choice of methodology to 

use when performing PVAs. These guidelines are based on empirical 

comparisons undertaken within this project, supplemented by existing 

knowledge and expert judgement. We generally recommend the use of 

integrated or semi-integrated population models (IPMs and SIPMs) for PVAs, 

in situations where sufficient abundance data are available. We note, 

however, that this recommendation is largely based on existing knowledge 

(e.g. the arguments outlined in Freeman et al., 2014), rather than the results 

of the comparisons in this project, because only a very limited evaluation of 

the empirical performance of SIPMs was possible within this project. 
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1. Introduction 

 

The Scottish Government has set a target of 100% of Scottish demand for electricity 

to be met by renewable sources by 2020. The marine environment offers 

considerable potential to harvest renewable energy, through wind, wave and tidal 

stream energy converters. However, the Scottish Government has a duty to ensure 

that offshore renewable developments are achieved in a sustainable manner, by 

protecting the natural environment from adverse impacts in accordance with the 

requirements of the Marine Strategy Framework Directive (2008/56/EC), the Habitats 

Directive (92/43/EEC) and the Birds Directive (2009/147/EC).  

 

Offshore renewable energy developments have the potential to impact on seabird 

populations that are protected by the EC Birds and Habitats Directives, notably from 

collisions with turbine blades and through displacement from important habitat 

(Drewitt & Langston 2006; Larsen & Guillemette 2007; Masden et al. 2010; Grecian 

et al. 2010; Langston et al. 2011; Scottish Government 2011). Other factors of 

concern are barrier effects to the movement of migrating or commuting birds, direct 

habitat loss, toxic and non-toxic contamination and negative effects of developments 

on the distribution and abundance of prey. These potential effects are predicted to 

be important for breeding seabirds that unlike at other times of the year, or for pre-

breeding age classes, are constrained to obtain food within a certain distance from 

the breeding colony (Daunt et al. 2002; Enstipp et al. 2006).   

 

Population Viability Analysis (PVA) is considered best practice in order to understand 

the population-level consequences of predicted effects of renewable energy 

developments on seabirds. This is because it provides a robust framework that uses 

demographic rates to forecast future population levels, either under baseline 

conditions or under scenarios of change resulting from, for example, an offshore 

energy development (Maclean et al. 2007; Freeman et al. 2014). PVAs essentially 

employ mathematical and statistical population models to forecast future population 

change, and can be undertaken using methods of varying complexity. Within the 

PVA framework, population models are used to forecast into the future under so-

called ‘baseline’ conditions with no impact present, and under ‘scenario’ conditions 

where an impact is applied to one or more of a set of demographic rates (e.g. 

survival rate). Comparisons are then made using a range of PVA metrics to assess 

differences between the baseline and scenario population trajectories. However, 

criticism has been levied about how the results of such PVAs can be difficult to 

understand, assess and interpret by stakeholders (Knight et al. 2008; Pe'er et al. 

2013). Moreover, due to uncertainty and variability amongst the input parameters for 

the population models underpinning PVAs, decision makers may lack confidence in, 
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and may misinterpret, predictions (Addison et al. 2013; Green et al. 2016). Thus, it is 

critically important that steps are made to solve these challenges where possible 

(Masden et al. 2015; Green et al. 2016), because PVAs remain one of the most 

widely used tools for evaluating the predicted impacts of anthropogenic 

developments, wildlife management or conservation strategies on focal populations. 

 

PVAs are required with increasing frequency in assessments of renewable 

developments on seabirds, and are also increasingly applied in assessments for the 

potential cumulative effects arising when a number of licenced activities are 

considered in combination. This may require the use of different population 

modelling approaches within PVAs to best address the range of circumstances such 

cumulative assessments contain; such as small or large effect sizes, sparse or high 

resolution spatial and temporal data, and varying degrees of data quality for different 

populations and species. Furthermore, some population modelling approaches are 

more labour intensive and therefore expensive than others, and there may be a lack 

of capacity in the UK community of environmental scientists to undertake them. 

There is, therefore, considerable need to provide clear guidance on which PVA 

approaches should be used in each circumstance – key elements of this are the form 

of the population model used to generate population forecasts, and the best 

framework for sourcing key model parameters such as demographic rates, where 

these are lacking for a site/population of interest. The choices of both (the population 

model, and the model parameter values) will be dependent on the quality of the data 

and the region involved. Without this clarity, there is a risk that assessments become 

protracted, standards of assessment vary, and decision-making uncertainty 

increases. This in turn can increase risk and reduce confidence that a consent 

decision will be made in a timely manner.  

 

Several reviews of appropriate Population Viability Analysis (PVA) model structure 

and parameter specification for seabirds have been conducted (e.g. Maclean et al. 

2007; Cook & Robinson 2010; Freeman et al. 2014; Horswill & Robinson 2015; 

Trinder & Furness 2015; Cook & Robinson 2016). These reviews revealed a wide 

range of methods, where the appropriate PVA model structure was primarily 

determined by the specific question, the life history characteristics of the species, 

and the availability of data at the colony of interest. However, the principal structure 

of the majority of PVAs used in the context of seabirds and marine renewables 

employed a matrix population model (Caswell 2001). In these models, the population 

abundance at a point in time is estimated by the abundance in the previous time 

step, subject to a set of equations governing the form and parameterisation of 

population demographic processes and their relationship to other ecological 

processes such as density dependence, immigration and emigration, and 
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environmental stochasticity. Typically, model population processes are described as 

discrete, sequential events using matrix model algebra (Caswell 2001). 

 

In the UK, a wide number of Environmental Statements have used PVAs to assess 

the impacts of wind farm developments on seabird populations and to inform the 

consenting process for approval of these developments (Freeman et al. 2014; Cook 

& Robinson 2016). It should be noted that details of PVAs for evaluating the impacts 

of wind farms are largely available through so called “grey literature” (reports and 

assessments) rather than ISI published papers. Cook & Robinson (2016) reviewed 

27 proposed sites at which the predicted population level impacts of offshore wind 

farms on seabirds had been considered during assessment: Aberdeen Offshore 

Wind Farm, Beatrice, Burbo Bank Extension, Docking Shoal, Dogger Bank Creyke 

Beck A, Dogger Bank Creyke Beck B, Dogger Bank Teesside A, Dogger Bank 

Teesside B, Dudgeon, East Anglia One, Fife Wind Energy Park, Galloper, Hornsea 

Project One, Inch Cape, London Array Phase II, MORL (MacColl, Stevenson, 

Telford), Navitus Bay, Neart na Gaoithe, Race Bank, Rampion, Seagreen Alpha, 

Seagreen Bravo, Triton Knoll 3, Walney I & Walney Extension (references in Cook & 

Robinson 2016). In a recent project (Jitlal et al. 2017), we synthesised these studies 

and a further eight reports that used PVA in this context (MacKenzie & Perrow 2009; 

2011; Inch Cape Offshore Limited 2011; JNCC & NE 2012; Moray Offshore 

Renewables Ltd 2013; Freeman et al. 2014; Trinder 2014; 2015). 

 

PVAs have aimed to either compare the predicted population trajectory into the 

future with the wind farm development present to that predicted without the 

development, or to quantify the risk the development poses by estimating probability 

of future population declines. Both deterministic and stochastic population models 

have been used for evaluating the impacts of wind farms, and it has been argued 

that deterministic models are a more “honest” approach where there is significant 

uncertainty around demographic parameters because the presented confidence 

limits from stochastic models may be taken to imply an unjustified level of precision 

in the underlying data (WWT 2012). However, importantly, deterministic models do 

not produce a distribution of results and hence cannot employ probabilistic metrics, 

and so long as the sources of uncertainty included in stochastic PVAs have been 

clearly articulated, it may be argued they are a better representation of potential 

future trajectories for population abundance. 

 

A number of different metrics from PVAs, for example the increase in the probability 

of a population decreasing by a fixed amount over time, have been used to provide 

assessments of the predicted impact of wind farms on seabird populations. Metrics 

have been criticised for being sensitive to uncertainties both in the life-history 
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parameters used to parameterise the models and in the size of the predicted impact 

of wind farms on the population (Masden et al. 2015; Green et al. 2016). Uncertainty 

in the demographic rates used to parameterise models can lead to uncertainty in 

whether the predicted magnitude of the impact (e.g., increased mortality or reduced 

productivity) will lead to an adverse effect on the focal population size (Masden et al. 

2015). Uncertainty in the size of the impact of wind farms on populations arises due 

to lack of empirical data on collision mortality, displacement or barrier effects on 

seabird populations. Thus, there is concern that the metrics may not enable 

sufficiently accurate predictions and good understanding of the predicted impacts of 

offshore wind farms on seabird populations (Green et al. 2016). Recent sensitivity 

analyses, conducted using simulation approaches (Cook & Robinson 2016; 2017) 

and real-world data (Jitlal et al. 2017), have demonstrated that ratio PVA metrics 

(e.g. ratio of impacted to unimpacted median population size) are markedly less 

sensitive to mis-specification in input parameters than probabilistic PVA metrics.  

 

In this project, we performed an initial review of the grey and peer-reviewed literature 

on the use of PVAs, and identified ten methods that have been used to perform 

PVAs in seabirds and other species. In the grey literature, we identified ten reports 

from 2009 onwards (Appendix A). The vast majority used stochastic stage structured 

matrix models for the PVA, the only exception being an individual based method 

within this framework for Sandwich terns (MacKenzie & Perrow. 2009; 2011). There 

was variation in the extent to which methods included density-dependent processes, 

stochasticity in demography and the environment, and immigration from other 

colonies. Most methods sampled from beta distributions to set survival and 

productivity rates with environmental stochasticity (sampling to derive year-specific 

vital rates to populate the matrix in each projection), and used binomial distributions 

to deal with demographic stochasticity. All methods required age and stage specific 

estimates for vital rates (typically survival and reproduction), age at first breeding, 

and proportion of adults that breed and initial counts. These were most often taken 

from published reports (mean and SE). Almost all methods assumed closed 

populations. 

 

Our synthesis of peer-reviewed literature (conducted using two searches in Web Of 

Science (“population viability analysis and seabirds” – all years; “animal population 

viability analysis” –2010 inclusive to present) identified 22 relevant peer-reviewed 

publications covering a wide range of taxa (mostly birds and mammals; Appendix A). 

Again, the majority of studies used various formulations of stochastic matrix 

population models (14/22; with one of these being an individual based stochastic 

simulation model). 
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Based on these reviews, we selected ten different PVA methodologies to apply and 

test within this project (see Section 3). We focused on the ability of these 

methodologies to accurately predict observed counts of abundance for 15 seabird 

species (northern gannet, fulmar, great cormorant, European shag, Arctic skua, 

black-legged kittiwake, herring gull, lesser black-backed gull, great black-backed 

gull, common tern, Sandwich tern, little tern, common guillemot, razorbill and Atlantic 

puffin), from the set of breeding colonies within the British Isles for which the Seabird 

Monitoring Programme (SMP) data met a set of minimum data requirements.  

 

We focused upon using population models to predict observed counts (rather than, 

for example, upon PVA metrics concerning the predicted impact of offshore 

renewables) because empirical data on abundance are collected directly and are 

readily available. Therefore, in this sense, the project was more accurately tasked 

with assessing the performance of alternative baseline population models commonly 

used to underpin PVAs. A direct empirical evaluation of the performance of PVA 

methods in accurately predicting PVA metrics is difficult, if not impossible, because 

PVA metrics typically compare two scenarios (impacted and baseline), of which only 

one can actually occur. 

 

Caution should be taken in relating the results of our evaluation to the performance 

of methods in predicting PVA metrics, rather than absolute abundance. It is 

important to note that the magnitudes of uncertainty in absolute abundance will often 

be very different to those for PVA metrics - e.g. we would generally expect 

substantially lower levels of uncertainty in ratio-based PVA metrics than in absolute 

abundance. We expect, however, that there is likely to be a qualitative link between 

performance of methods in accurately predicting absolute abundance and 

performance of methods in accurately predicting PVA metrics. We might reasonably 

expect that, in most situations, methods that do relatively poorly in predicting 

absolute abundance are also likely to do relatively poorly in predicting PVA metrics, 

and that methods that underestimate uncertainty in absolute abundance will also 

underestimate uncertainty in PVA metrics.  

 

We applied each population modelling method to data for a “training” period and 

used the method to generate predictions for a “test” period – we then compared the 

modelled results against the actual counts observed within the test period. We 

considered different possible splits between the training and test period: specifically, 

we used four possible definitions of test period (from 2013-2017, 2008-2017, 2003-

2017 or 1998-2017), and, in each case, defined the training period to be all years 

with data prior to this. We assessed the ability of the population models to predict the 

observed counts using a range of criteria: accuracy and bias, the number of 
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situations in which it is possible to deploy each method (where minimum data 

requirements are met), accurate quantification of uncertainty, and the computational 

time required to implement each method. We applied methods to all species, years 

and colonies for which the minimum data requirements were met, and assessed 

performance using all species-colony-year combinations within the test period for 

which an observed count was available. Note that the minimum data requirements 

were applied automatically, and that the “colony” definitions we used were based 

directly on the lowest reporting level in the SMP; this means that some key special 

protection areas (SPAs) will have been partially or completely excluded from our 

evaluation. For kittiwakes at the Flamborough and Filey Coast SPA, for example, 

only one of the smaller SMP count units, at Cayton Bay, has been included, whilst 

the main Flamborough and Bempton colony has been excluded. The need to use 

automated rules for data selection was unavoidable, given the large number of 

species, populations and methods being considered within this project. However, the 

exclusion of important colonies does mean that the results should be interpreted 

cautiously. The detailed results of our evaluations are available as a CSV file, and 

this allows readers to check which colonies have been excluded for each species. 

 

In summary, this project addressed key concerns by testing a range of PVA 

modelling approaches (population models) across a number of seabird species, data 

qualities and regional scales to establish the most appropriate method to use and 

under which circumstances. We provide recommendations to guide end users on 

how PVAs should (and should not) be produced, enabling PVA model development 

to be assessed for all relevant species and regions. This addresses the urgent need 

to determine the feasibility of PVAs that are flexible in application whilst also 

providing sufficient confidence that they perform appropriately for the population of 

interest. 

 

2. Data 

 

The UK has some of the best demographic data on seabird populations in the world. 

The central repository for population count and breeding success data is the Seabird 

Monitoring Programme (SMP) online database (http://jncc.defra.gov.uk/smp/). Other 

demographic data, such as adult survival rates and age at first breeding, have been 

published in the peer-review literature and reviewed in contract reports (e.g., Horswill 

& Robinson 2015). In this study we considered the 15 UK seabird species for which 

data coverage is most complete. For these species, and others, the largest amounts 

of data are typically available for population counts, followed by productivity, with 

adult survival having the most sparse data. A perennial concern is the paucity of data 

on adult survival, generally only available at a very small number of colonies (<5) for 

http://jncc.defra.gov.uk/smp/
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a particular species. It should also be noted that the frequency with which count data 

are collected is often highly variable among colonies. For example, in the Forth/Tay 

region, some SPA populations are counted annually while others are only counted 

every few years (Freeman et al. 2014). This variation in coverage of count and 

demographic data underpins the rationale for this project. 

 

2.1. Abundance data 

 

Abundance counts of breeding birds were extracted from the SMP database, using 

the most up to date dataset available at the time of the request (January 2018). 

Counts were acquired for 15 seabird species spanning the 1960s to 2017: northern 

gannet, fulmar, great cormorant, European shag, Arctic skua, black-legged kittiwake, 

herring gull, lesser black-backed gull, great black-backed gull, common tern, 

Sandwich tern, little tern, common guillemot, razorbill and Atlantic puffin. Additional 

colony counts for northern gannets, spanning the period from the early 1900s to 

2017, were collated by Prof. S. Wanless and included in the analysis.  

 

Our main evaluation used SMP data at the lowest possible level of recording (e.g. 

SMP count units). This is because this is the level at which count data are collected, 

but it is important to note that this does not always correspond to a biologically 

distinct population or to the spatial level at which PVAs would be run in practice 

(since a breeding colony may contain multiple SMP count units). 

 

A key objective of this work was to compare the results of running population models 

using a range of different methods against the results obtained using a previous 

application of Semi-integrated Population Models in the Forth-Tay (Freeman et al. 

2014; termed Bayesian State Space Model in that report – see Section 3.4 for 

rationale for term change). It was not feasible, within the constraints of this project, to 

re-run that analysis, so, to ensure comparability of our results, we: 

 

a) followed Freeman et al. (2014) in running these analyses at the SPA level, 

using data that have been aggregated to that level;  

b) followed Freeman et al. (2014) in manually adding, removing or correcting a 

number of doubtful counts in the SMP for colonies within the four SPAs in the 

Forth-Tay region (St. Abb’s Head to Fast Castle SPA, Forth Islands SPA, 

Fowlsheugh SPA, Buchan Ness to Collieston Coast SPA); 

c) followed Freeman et al. (2014) in using linear regression to convert plot 

counts into estimated whole colony counts for four combinations of species 

and SPA (razorbill and common guillemot for St. Abb’s Head to Fast Castle 
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SPA; common guillemot for Fowlsheugh SPA and Buchan Ness to Collieston 

Coast SPA). 

 

Counts for most species relate to breeding pairs; for guillemot and razorbill, however, 

the counts relate to individuals, and a conversion factor (the “k-value”), needs to be 

applied in order to derive the number of pairs from the observed counts (Harris et al. 

2005a and 2005b updated). 

 

2.2. Survival data 

 

Survival data were only available for a very limited set of colonies. Species level data 

for adult and immature survival in each of the 15 species (see Table 0-2) 

were, therefore, collated from the JNCC Report (No. 552) by Horswill & Robinson 

(2015). A single estimate of mean survival, and an associated standard deviation 

(representing inter-annual variability) were extracted for each species, and these 

were, wherever information was available, produced separately for adults and 

immatures.  

 

It appears possible that the species-level standard deviations presented in Horswill & 

Robinson (2015) may in some cases be underestimates, because some of the 

species-level values have been derived from study-level standard errors (SEs), 

rather than standard deviations (SDs), and SEs (which represent uncertainty) will 

tend to be systematically lower than SDs (which represent variability). In order to err 

on the side of caution (e.g. conservatism), we, therefore, re-calculated the species-

level SDs. We calculated them using the same basic approach as Horswill & 

Robinson (2015), but when study-level SEs rather than SDs were used within their 

calculations, we multiplied these by the square root of the number of years of data 

available for that study. This is a crude adjustment, derived under some strong and 

potentially unrealistic simplifying assumptions (i.e., the assumption that the SEs are 

derived from one data point per year, that years are independent, and that annual 

survival rates are normally distributed), but should nonetheless help to avoid any 

systematic under-estimation associated with using SDs in lieu of SEs. 

 

Within the main evaluation of methods, the same survival rates were assumed to 

hold for all colonies, in the absence of more detailed data. Within our separate 

evaluation of methods in the Forth-Tay region, however, we do also consider the use 

of survival rates derived from local colony-specific data from the Isle of May and 

used in Jitlal et al. (2017), in addition to consider the species-level rates from 

Horswill & Robinson (2015). 
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2.3. Breeding success data 

 

Breeding success data for each of the 15 species were extracted from the Seabird 

Monitoring Programme database (1986-2017). Data coverage for each species was 

generally considerably poorer than for abundance (Table 0-2), but much better than 

for survival.  

 

2.4. Regional definitions 

 

We selected a range of alternative regional definitions to compare the performance 

of results obtained using data derived from a range of different spatial scales. We 

considered ten alternative regional classifications over which abundance or breeding 

success data could be pooled to inform the demographic rates used with the 

alternative population models.. 

 

The first option is simply to apply population models locally – i.e., to use data from 

the focal colony only, without any regional pooling (we denote this option R0). The 

remaining nine classifications that we consider are: 

 

R1: SMP regions (based roughly on administrative boundaries used for local 

government) 

 

R2: ICES regions 

 

R3: Regional Seas (JNCC) 

 

R4: CRA (Cook & Robinson ‘ecologically coherent’ regions based on trends in 

abundance) 

 

R5: CRB (Cook & Robinson ‘ecologically coherent’ regions based on trends in 

breeding success) 

 

R6: MSFD regions 

 

R7: OSPAR regions 

 

R8: “Global” (i.e. regional pooling over all colonies within the British Isles) 

 

R9: Forth-Tay SPAs (the four Forth-Tay SPAs considered in Freeman at al. 2014) 
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The number of regions within each classification is given in Table 0-3. Examples of 

the regional classifications are shown in Figure 1.  

 

“Local” and “Global” pooling were included in order to capture extreme cases (no 

spatial pooling whatsoever, or pooling data across the entire British Isles). The 

“Forth-Tay SPAs” were included to allow comparison of our results with those of 

Freeman et al. (2014), because this was the spatial scale at which their analysis was 

conducted and reported. OSPAR, MSFD, ICES, SMP and Regional Seas 

classifications were considered because these are widely used for the purposes of 

reporting. 

 

The remaining two approaches, “CRA” and “CRB”, were designed to provide more 

ecologically-motivated regional classifications. They are based on the “overall” 

regions that Cook & Robinson (2010) derived in relation to trends in abundance 

(Table 4.1 in their report) and breeding success (Table 4.2 in their report). Cook & 

Robinson (2010) also derived species-specific regions, but we did not consider those 

because not all colonies were allocated to regions within these, and because 

species-specific regions were not developed for all of the species included in this 

study. Examples of the regional classifications are shown in Figure 2.4. Note that the 

CRA and CRB regions are based on clusters of colonies with similar abundance or 

breeding success trends, and are not reflective of the at-sea regions used by 

individuals from different colonies. 
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Figure 1: Regions used for data pooling within population modelling methods. Note that 
examples for CRA (Cook & Robinson ‘ecologically coherent’ regions based on trends in 
abundance) and CRB (Cook & Robinson ‘ecologically coherent’ regions based on trends in 
breeding are shown only for fulmars. See Cook & Robinson (2010) for full report. 
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3. Statistical methods for population models used in PVA 

 

We considered a range of different statistical methods for generating population 

forecasts within PVAs. Each population modelling method is designed to provide 

predictions for abundance in future years, and each of the methods has a similar 

basic structure: 

 

1. Use a pooling region classification to decide which input data to use in 

deriving the parameters of the population model (e.g., abundance , breeding 

success etc.) for the colony or region of interest; 

2. Estimate or derive the values of the parameters of the population model from 

empirical data for the training period derived from the region in step (1);  

3. Find the most recent count for the colony or region of interest; 

4. Use (1), (2) and (3) to define the input values for each population model; and 

5. Generate predictions - either deterministically, or by simulation, depending on 

the method. 

 

Population models can either be used to generate predictions for individual colonies, 

or for wider regions.  

 

3.1. Pooling and reporting regions 

 

It is important to note that we use the term “regions” in two different ways within the 

context of a PVA: 

 

(a) To specify the level at which outputs from the PVA are produced (“reporting 

regions”); and 

(b) In order to determine the input data that will be used in determining the 

parameter estimates of the PVA model (“pooling regions”). 

 

The choice of reporting region classification is related to the objectives of the PVA, 

i.e. at what spatial level are users interested in running the PVA? In practice, a range 

of reporting region scales may be of interest when running PVAs, ranging from the 

SPA level up to the scale of very large spatial regions (e.g., the entire North Sea). 

For this project, however, our focus is solely upon the empirical assessment of 

performance, so we focus only on spatial scales at which performance can be 

assessed empirically in a defensible way. A defensible assessment of performance 

for a spatial region is really only possible when a count of abundance for the entire 

region is available for at least one year within the test period, so that there are 

observed values of abundance in the test period to compare the PVA projections 
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against. For larger scale region classifications (e.g. OSPAR, ICES, Regional Seas, 

SMP), exploratory analyses showed that this condition was almost always not met, 

because in any particular year data are almost always missing for at least some of 

the colonies within each region. We, therefore, focus in this project solely upon 

assessing the performance of PVAs that have been run for individual SMP count 

units (henceforth referred to for convenience as “colonies”, although it is important to 

note that they do not always correspond to biologically distinct breeding colonies). 

The only exception is for our separate evaluation of performance in the Forth-Tay 

region, where we follow Freeman et al. (2014) in running PVAs at the SPA level (for 

four SPAs), using annual counts of abundance that have been summed to the SPA 

level.  

 

The choice of pooling region classification, by contrast, is a methodological one, i.e., 

which level of spatial pooling of the PVA inputs produces the most accurate 

predictions of abundance, at the level of an individual site? In this study, we 

considered ten different potential regional classifications for use as “pooling regions” 

(Section 2.4), and compared the performance associated with these different 

classifications.  

 

3.2. Leslie matrix models 

 

An initial literature review (see Introduction) showed that most PVAs, in both the 

academic literature and the grey literature, use approaches that are based on Leslie 

matrices. These used estimated demographic rates – survival and productivity – to 

generate projections of future population size. 

 

3.2.1. Overview 

 

We focused upon the two main implementations of Leslie matrix approaches to 

PVAs – a “deterministic” approach and a “stochastic” approach. The stochastic 

approach is designed to incorporate the effects of demographic and environmental 

heterogeneity, which induce inter-annual variation in demographic rates. The 

stochastic approach is arguably more biologically realistic than the deterministic 

approach, but we considered both because (a) the stochastic approach is more 

computationally intensive than the deterministic approach and (b) the stochastic 

approach depends upon having a reliable estimate of the inter-annual standard 

deviations associated with the demographic rates; and such values are not always 

available in practice. In both cases, we consider both “local” (i.e., colony level) and 

“regional” variants of the PVA approach. 
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The basic inputs to the Leslie matrix PVA approaches that were considered are 

summarised in  

 

Table 0-4. These include demographic rates for breeding success (I1) and survival 

(I2); life history traits (age at first breeding, I3); and population abundance (initial 

count, I4). A key point is that Leslie matrix approaches only make use of a single 

count of abundance to initialise the model projection – and subsequent projections 

are primarily generated using data relating directly to the demographic rates. 

 

The Leslie matrix approaches then involve two main stages – “estimation” and 

“simulation”.  

 

3.2.2. Estimation step 

 

The estimation stage is common to both deterministic and stochastic approaches. It 

involves three steps (E1, E2 and E3): 

 

 

E1: Extract the mean and SD of breeding success to use within the PVA. For “local” 

variants of PVA these values are simply taken to be the mean and (inter-annual) 

standard deviation of breeding success within the target colony (i.e., the colony of 

interest). For “regional” variants of PVA these values are derived by identifying the 

mean and SD values for each colony within the pooling region, and then following 

the recommended procedure in Horswill & Robinson (2015). This procedure 

averages across breeding successes reported for each constituent colony weighted 

by the colony size to produce a mean breeding success for the region. Similarly, to 

generate the SD for breeding success over the region, this method either takes the 

average over reported breeding success SDs for all constituent colonies, or the SD 

of the means reported for each colony, and uses whichever of these two values 

results in the largest SD estimate.  

 

E2: The mean breeding success from stage E1 is then used, in conjunction with the 

mean survival value (I2) and age at first breeding (I3) to calculate the annual survival 

 Input Description Value determined by 

I1 Breeding success Mean, and, for stochastic version 
only, SD 

Species & pooling region 

I2 Survival Mean, and, for stochastic version 
only, SD 

Species & age class 

I3 Age at first breeding Value Species 

I4 Initial count Value, year associated with the value Species & target colony 
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rate 𝑠𝑎 and productivity rate 𝑟𝑎 for individuals of age 𝑎. These rates are, in turn, used 

to construct the “deterministic” version of the Leslie matrix, 𝑳, which is of the form: 

 

𝑳 =

[
 
 
 
 
 
𝑟1 𝑟2 𝑟3 … 𝑟𝐴−1 𝑟𝐴
𝑠1 0 0 … 0 0
0 𝑠2 0 … 0 0
⋮ ⋮ ⋮ ⋱ 0 0
0 0 0 𝑠𝐴−2 0 0
0 0 0 0 𝑠𝐴−1 0 ]

 
 
 
 
 

 

 

(where 𝐴 denotes the maximum age of the species). 
 

E3: The stable age structure is calculated from the Leslie matrix constructed in Step 

E2 using the function stable.stage from the popbio package (Stubben & Milligan 

2007) within R; this gives the proportion of birds lying in each age class. Technically 

speaking, the stable age structure is calculated by: 

 

(a) deriving the eigenvectors and eigenvalues of the Leslie matrix 𝑳; 

(b) finding the eigenvector associated with the largest eigenvalue; and 

(c) rescaling this eigenvector so that the values sum to one (i.e., dividing each 

value within the eigenvector by the sum of all values). 

 

3.2.3. Simulation step 

 

S1: The total initial population size was first estimated by converting the most recent 

count from the target colony (I4) into an estimate of the number of breeding pairs 

(the approach taken depends on species; see Section 2.1). This was then multiplied 

by two (to convert from breeding pairs to breeding individuals), and subsequently 

divided by the proportion of the age structure that corresponds to breeding adults as 

derived from the stage age structure (E3) (to scale up from breeding adults to the 

whole population). The initial number of birds within each age class, 𝒛1, was then 

calculated by multiplying the whole population by the proportion of birds in this age 

class within the stable age structure.  

 

S2: For the deterministic version of the PVA, the counts in subsequent years were 

calculated by propagating forwards using the deterministic Leslie matrix from Step 

E2; the counts in each age class in year 𝑡 were calculated from those in year 𝑡 − 1 

via the matrix calculation 

 

𝒛𝑡 = 𝑳𝒛𝑡−1 
 

For the stochastic version of the PVA this step is more involved:  
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S2a: use moment matching to find the parameters of a beta distribution that match 

the mean and SD of survival from I2 and the mean and SD of breeding success from 

E1. 

 

S2b: simulate annual breeding success and survival rates using the beta 

distributions in Step S2a.  

 

S2c: use the simulated demographic rates, from S2b, to generate a Leslie matrix for 

each year. 

 

S2d: use the Leslie matrices from S2c and the initial counts from S1 to generate 

projected counts. 

 

3.3. Time series models 

 

The most widely used alternative to Leslie matrix approaches within the literature 

involves fitting non-linear population growth models to count data on abundance. 

Such models are very widely used within ecology, and there is a considerable 

literature regarding the relative advantages and disadvantages of each model. 

 

3.3.1. Model types 

 

If 𝑁𝑡 denotes the number of birds at a particular colony in year 𝑡 , then the most 

widely used growth models are all of the general form: 

 

log (
𝑁𝑡

𝑁𝑡−1
) = 𝛼 + 𝛽𝑓(𝑁𝑡−1) + 𝜀𝑡 

          (Equation 1) 

where the “process-error” term,  𝜀𝑡, is assumed to be normally distributed: 

 

𝜀𝑡~𝑁(0, 𝜎𝑝
2) 

The parameter 𝛼 represents the growth (or decay) rate of the species in the absence 

of any density dependent effects, whilst 𝜎𝑝
2represents the level of process 

uncertainty. 

 

The parameter term 𝛽 represents the level of density dependence, and the function 

𝑓(𝑁𝑡−1) captures the form of the density dependence. We focus here upon three 

models for 𝑓, all of which are widely used in practice: 
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Simple growth model: 𝑓(𝑥) = 0 

Ricker model: 𝑓(𝑥) = 𝑥 

Gompertz model: 𝑓(𝑥) = log (𝑥) 

 

The first model (Dennis et al. 1991) simply omits the density dependence term, and 

provides a simple model for growth or decay in the absence of density dependence. 

The Ricker (1954) and Gompertz (Winsor 1932) models assume that density 

dependence has a particular parametric form. 
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3.3.2. Parameter estimation 

 

Two main approaches for estimating the parameters of these models are commonly 

used: 

 

1. transform the response and explanatory variables in such a way that the 

resulting model is linear, and then apply a standard simple linear regression; 

or 

2. retain the response and explanatory variables on the original scale, and 

estimate the parameters via non-linear regression. 

 

Within R (R core team 2019), these approaches will generally utilise either the lm or 

nlme functions (respectively). 

 

More specifically, the models all have a log-likelihood function of the form: 

 

𝑙(𝛼, 𝛽, 𝜎𝑝
2, 𝜃) = ∑−

1

2
(
log(𝑁𝑡) − log(𝑁𝑡−1)𝛼 − 𝛽𝑓(𝑁𝑡−1; 𝜃)

𝜎𝑝
2 )

2𝑛

𝑖=1

 

 

The values of the unknown parameters (𝛼, 𝜎𝑝
2, and, where relevant, 𝛽 and 𝜃) can be 

estimated through maximisation of this log-likelihood function. Numerical 

optimisation provides one way to do this; an alternative approach, which is faster and 

less prone to convergence problems, involves noting that the  model is effectively 

equivalent to a simple linear regression model in which log (
𝑁𝑡

𝑁𝑡−1
) is the response 

variable and 𝑓(𝑁𝑡−1) is the explanatory variable. In situations where 𝑓(𝑁𝑡−1) is a 

function of the data alone – i.e., does not depend on any unknown parameters – the 

parameters 𝛼, 𝛽 and 𝜎𝑝
2 can be calculated using standard software for fitting a linear 

regression model (e.g., within R, the lm function in the stats package). We use lm in 

this project, because initial results suggested that the results were more stable, and 

less prone to issues of non-convergence, than when using nlme. Note that for a real-

world analysis of smaller scope than this project, nlme would still be an attractive 

option, but non-convergence issues mean it is not straightforward to automate the 

running of nlme so that it can successfully fit a large number of models without 

manual intervention. 

 

3.3.3. Dealing with missing data 

 

The parameters of the population growth models can be estimated using lm 

whenever a count is available for both the current and previous year. We required at 
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least ten years of data on abundance to be available for which this criterion was 

fulfilled in order to be able to apply these methods. Note the choice of ten years as a 

threshold was somewhat arbitrary, but was designed to be extremely minimal - it 

could certainly be argued that ten years of data is still insufficient to reliably fit time 

series models of this complexity. 

 

Within a draft version of this report we attempted to deal with situations in which 

missing data meant minimum data requirements were not met by using an 

alternative form of parameter estimation - data cloning, a modern computational 

statistical approach to maximum likelihood estimation in complex models (Lele et al. 

2007) – to fit the models. The results, however, were extremely poor, and this 

appeared to be due to issues of non-convergence. The R package for applying data 

cloning to PVAs (PVAClone (Nadeem & Lele 2012)) makes use of the JAGS 

package (Plummer 2003), which is a widely-used piece of software for fitting 

complex models in a Bayesian framework via Markov chain Monte Carlo, but which 

is very difficult to apply successfully in an automated way.   

 

Within the context of this project it was not possible to check and solve model 

convergence issues within PVAClone (given the large number of analyses being 

considered). Therefore, at the suggestion of the Project Steering Group, we 

considered an alternative approach, in which parameter estimation was performed in 

the standard way (using lm), but imputation was used to infill missing data prior to 

fitting the models. 

 

Imputation is a widely used statistical approach to deal with missing data by 

replacing missing data values with “imputed” values, which are then analysed as if 

they were real data values. There are two broad approaches to imputation – “single 

imputation”, in which a single value is selected to replace each missing value, and 

“multiple imputation”, in which multiple possible values are selected. Multiple 

imputation is more defensible, because it accounts for the uncertainty associated 

with the imputation of missing data, but also more computer intensive, because it 

means the analysis needs to be re-run for each imputed dataset. The large numbers 

of models being fitted for this project meant that it was only feasible to use single 

imputation. 

 

Various modelling approaches to imputation are possible. We followed the non-

parametric approach of JNCC1, which, in turn, follows that of Thomas (1993). This 

approach is a generalisation of the “simple chaining method” that has traditionally 

                                                      
1http://archive.jncc.gov.uk/pdf/Methods%20of%20analysis%20for%20production%20of%20indices%2

0of%20abundance%20and%20estimation%20of%20productivity1.pdf 
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been widely used in calculating annual indices of population size within ecology; the 

generalized version makes more efficient use of the available data than simple 

chaining. For a specific colony, and pooling region classification, the approach 

involves two stages: 

 

Stage 1: Determine the pooling region containing the colony of interest, and within 

this region for each pair of years, 𝑗 and 𝑘, calculate the ratio 𝑟𝑗𝑘 of total abundance in 

year 𝑘 to total abundance in year 𝑗, where these totals are calculated by summing 

observed counts for the set of colonies within the pooling region that are observed in 

both years 𝑗 and 𝑘. 

 

Stage 2: For the colony of interest 𝑖 and a particular year 𝑗, in which no count is 

available, calculate the imputed count to be: 

 

𝑧𝑖𝑗 =
1

|𝑇𝑖|
∑ 𝑦𝑖𝑘𝑟𝑗𝑘
𝑘∈𝑇𝑖

 

 

where 𝑦𝑖𝑘 denote the observed counts at this colony for the set of years 𝑇𝑖 in which 

observed counts are available. The imputed value is, therefore, a weighted sum of 

the observed counts for the colony of interest, where the weights are calculated 

based on year-to-year variation at the level of the pooling region. 

 

The time series for the colony interest is then taken to consist of observed counts, for 

years where these are available, and imputed counts, for years where no observed 

count is available.  

 

We applied this method to all colonies that have at least five observed counts; 

imputed values were generated using each of the possible pooling region 

classifications.  

 

Diagnostic checks on values generated by the imputation procedure suggested that 

it will sometimes produce implausible values. We, therefore, imposed a set of filters, 

in order to remove imputed values that lacked defensibility. Specifically, we removed 

values: 

 

a. that were for years outside the set of years with observed counts for the 

colony of interest – i.e. years that were being extrapolated rather than 

interpolated; 
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b. that lay outside the range 

minimum observed count 2⁄ , maximum observed count ∗ 2) and so were 

inconsistent with the observed counts for this colony; 

c. that were associated with colonies at which either the maximum observed 

count was very low (less than ten) or the minimum observed count was zero, 

on the grounds that the results of ratio-based calculations become highly 

unstable when applied to very small counts, and become meaningless when 

applied to zero values. 

 

3.4. Semi-integrated Bayesian population models 

 

The key limitation of the approaches outlined in Sections 3.2 and 3.3 is that they 

make only partial use of the available data. Leslie matrix approaches primarily only 

use data on survival and breeding success, and ignore data on abundance (asides 

from the initial population size). Time series approaches use data on abundance but 

ignore data on survival and breeding success. Both forms of data – abundance and 

demography – should, in principle, be able to provide information that is relevant to 

the generation of predictions, so it is problematic that each of these approaches 

makes only partial use of the available data. 

 

Integrated population models (IPMs) attempt to overcome this by making use of all 

available data. The models considered here were those used in Freeman et al. 

(2014). They are not, strictly speaking, Integrated Population Models, because they 

do not estimate the model parameters simultaneously from multiple data sources. 

However, they do have the key practical feature of Integrated Population Models – 

that they use both demographic data and data on abundance to infer the underlying 

size of the population in each year, and in generating predictions for future years. 

We therefore refer to these as “Semi-integrated” population models (SIPMs; we 

could also refer to them as Bayesian state space models, as they were termed in 

Freeman et al. 2014 and Jitlal et al. 2017, but that terminology is ambiguous in this 

context because time series models can also be fitted as Bayesian state space 

models).  

 

The basic model structure of Freeman et al. (2014) is similar to that of a Leslie matrix 

model; it is the fact that parameter estimation is based upon multiple sources of data, 

rather than the underlying structure of the model, that separates this approach from 

the simpler Leslie matrix approaches outlined in Section 3.2. 
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The model considered by Freeman et al. (2014), was, more specifically, of the 

following form for each year 𝑡: 

 

Number of adults: 𝐴𝑡~Poisson(𝑁𝑡−1𝑠𝑡−1) 

Number of individuals recruited: 𝑅𝑡~Poisson (𝑁𝑡−𝑎
𝑓𝑡−𝑎

2
𝑣𝑎) 

Total population size (unobserved): 𝑁𝑡 = 𝐴𝑡 + 𝑅𝑡 

Observed abundance: 𝑦𝑡~N(𝑁𝑡, 𝜎𝐸
2) 

where 𝑠𝑡 and 𝑓𝑡 refer to year-specific adult survival and fecundity rates, 𝑣 represents 

the immature survival rate, and 𝑎 represents the age at first breeding. The annual 

survival and fecundity rates are assumed to follow log-normal distributions, of which 

mean and standard deviation are determined a priori from empirical data on survival 

and breeding success (respectively). The remaining model parameters - the 

immature survival rate 𝑣, the level of observed error 𝜎𝐸
2, and the initial true population 

sizes (at the start of the time series) - are then estimated by fitting the model to 

observed abundance data via MCMC using the JAGS software (Plummer 2003). 

Further information on priors, inference and data pre-processing is given in Freeman 

et al. (2014). 

 

3.5. Summary of methods 

 

The set of PVA methods that we considered is summarised in Table 0-5.  
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Table 0-5.   

 

 

We considered all possible combinations of PVA methods and pooling region 

classifications, except that for Semi-integrated population models we only 

considered the Forth-Tay SPAs, for which outputs have already been generated. We 

therefore considered a total of (9 * 10) + 1 = 91 PVA “methods” (combinations of 

statistical methodology and pooling region classification). 

 

4. Additional considerations in PVA modelling 

 

In this section, we briefly review the impact of two key issues upon PVAs: density 

dependence and the existence of meta-populations. These processes were not able 

to be represented within this project, however, we briefly summarise current 

understanding regarding the influence of these processes upon population dynamics 

in seabirds, of relevance to PVAs. 

 

  

Method Model 
type 

Specific model Type of data 
required 

Minimum data 
requirements 

Survival 
rates 

ATG Abundance 
time series 
models 

Simple growth 
model 

abundance 10 years+ in TP for which 
abundance data are 
available in both current 
and previous year 

Not 
relevant 

ATR Ricker Abundance 

ATZ Gompertz Abundance 

LDN Leslie 
matrix 
models 

Deterministic Demographic rates 1+ years breeding success 
data in TP, and 1+ years 
abundance data in TP 

National 

LDF  Forth-Tay 

LMN Stochastic – 
constrained 
productivity 

Demographic rates 2+ years breeding success 
data in TP, and 1+ years 
abundance data in TP 

National 

LMF Demographic rates Forth-Tay 

LUN Stochastic – 
unconstrained 
productivity 

Demographic rates National 

LUF Demographic rates Forth-Tay 

IPM Semi-
integrated 
population 
model 

Freeman et al. 
(2014) 

Abundance and 
demographic rates 

See Freeman et al. (2014) Forth-Tay 
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4.1. Density dependence 

 

Should an Offshore Renewables Development (ORD) act to reduce abundance at a 

colony (through lethal or cumulative sub-lethal effects), density-dependent 

demographic responses may partially compensate for these losses through 

increased productivity or survival of remaining individuals (Horswill & Robinson 2015; 

Horswill et al. 2016; Cook & Robinson 2016). There is considerable evidence for 

density-dependent regulation of population processes in UK seabirds (Horswill & 

Robinson 2015); however, the precise form and strength of these relationships 

remain uncertain (Cook & Robinson 2016), in part due to a lack of broad-scale 

studies and to site-specific variation in environmental effects.  

 

Life history theory suggests that for long-lived species such as seabirds with low 

productivity, adults will buffer against the effects of adverse environmental variation 

by sacrificing reproductive success over their own survival (Williams 1966). 

Therefore, the most likely impact of density dependence will be to act on 

reproduction, leading to negative density-dependent effects on per capita population 

growth rates. The incorporation of density-dependent processes into population 

models will tend to lead to a reduction in the rate of projected population declines, for 

species that have a negative population trajectory (Weimerskirch 2001). The 

inclusion of such density dependent demographic processes in PVA models will, 

therefore, tend to lead to results that are less precautionary, but hopefully also more 

biologically realistic and, therefore, accurate, than the results obtained using density-

independent models lacking any compensatory feedback mechanisms (Cook & 

Robinson 2016).  

 

A review and simulation study by Cook & Robinson (2016) demonstrated that whilst 

most PVA output metrics were sensitive to inclusion of density dependence in 

models, they were relatively insensitive to the assumed form of density dependence. 

The authors, therefore, recommended that where there is good evidence for the 

presence and direction of density dependent relationships in seabirds they should be 

incorporated into population models and used to generate PVA metrics. However, 

with the important caveat that these relationships appear to be highly site-specific 

and therefore cannot be assumed to be present at all sites (Cook & Robinson 2016), 

thereby affecting the efficacy of incorporating such processes into regional PVAs.  

 

Density dependent effects on survival of immatures in the context of PVAs have 

already been assessed within state-of-the-art SIPMs for one species in the Forth-Tay 

region, the common guillemot (Freeman et al. 2014). This model can only be applied 
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to data for relatively data-rich colonies, however, and so an assessment of its 

performance within this project is only made for a single species in this region. 

 

4.2. Meta-populations 

 

PVA models lacking a meta-population structure assume populations are closed, 

which is an unrealistic assumption for many seabird species. Seabird colonies, 

including those designated as SPAs, are typically sub-populations within larger 

meta-populations, which are collections of spatially distinct sub-populations linked by 

dispersal and migration (Hanski 1999). When PVA models define populations in 

terms of SMP count units (as in this study) this is likely to be a particular issue, 

because these units often do not refer to biologically distinct populations, but rather 

to subdivisions of a breeding colony. Meta-population models aim to quantify 

profoundly more complex dynamics than single population models, which typically 

assume closed populations, by factoring in movements among sub-populations 

(dispersal, immigration, emigration) as well as colony-specific survival and 

productivity rates. Such models are highly relevant to conservation policy, 

particularly for mobile species such as seabirds where interchange among colonies 

arises through dispersal and emigration. However, the impact of meta-population 

dynamics has rarely been considered in conservation policy (but see Sanz-Aguilar et 

al. 2016), including marine renewable assessments.  

 

Whilst meta-population models have been applied to seabird populations (e.g. 

Spendelow et al. 1995; Inchausti & Weimerskirch 2002; Dugger et al. 2010), they 

require the estimation of between-colony rates of movement involving the 

simultaneous study of marked individuals in several colonies or areas containing 

local populations. Some data exist for movement and dispersal of individuals 

between colonies in seabirds (e.g. for European shag and kittiwake, Danchin & Cam 

2002; Coulson 2011; Barlow et al. 2013; Grist et al. 2014; 2017), and it is broadly 

recognised that this process should be included within population and PVA models 

used to assess impacts of disturbance (Furness & Trinder 2016). However, even 

when such data do exist, the statistical estimation of rates of probability of movement 

between colonies is non-trivial (Dugger et al. 2010), and often highly context 

dependent in terms of population densities and environmental conditions. Therefore, 

few reliable estimates of inter-colony movement processes exist for seabirds, 

hindering the use of meta-population dynamics within PVA assessments. The 

development and fitting of meta-population models is beyond the scope of this 

project, and so is not considered further.  
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5. Methodology for comparing PVA approaches 

 

The key objective of this project is to evaluate and compare the performance of 

different population models underlying PVA methods in practice, within the context of 

specific seabird populations (15 species, in the waters of the British Isles). 

 

PVA is concerned with the use of population models to predict future population 

sizes, potentially under different impact scenarios. In this project, we compare how 

well different population modelling methods, typically employed within PVAs, perform 

in terms of accurately predicting future population sizes. We note that predictions of 

absolute future population sizes are often not the key output from PVAs – we focus 

on them here primarily because they are an observable quantity, for which extensive 

data already exist, and so provide a basis for assessing the empirical performance of 

the population models that underpin PVAs. Care should be taken in generalising the 

results of the evaluations to the performance of methods in producing PVA metrics, 

although we think the ability of methods to produce accurate predictions of absolute 

abundance provides a good overall assessment of their defensibility. 

 

The best way of evaluating the performance of these models in predicting 

abundance is to split the available population abundance data into a “training period” 

that will be used as a basis for generating PVAs and a “test period” that will be used 

as a basis for evaluation. Such an approach is standard in assessing the 

performance of predictive models. The evaluation will involve comparing the actual 

counts within the test period to the predicted values for this period generated by the 

population models; we will also account for the uncertainty measures produced by 

the population models within this evaluation. 

 

5.1. Length of test period 

 

We define the split into training and test data in terms of the length of the test period: 

the final 𝑇 years (leading up to 2017, the final year for which data are available) are 

assumed to form the test period, and all years prior to that are assumed to form the 

training period. 

 

The choice of the length of the test period is a challenging issue: using a short test 

period reduces the amount of data available for assessing performance, but using a 

short training period will necessarily reduce the performance of the methods being 

evaluated. In practice, PVA is often used to predict relatively far into the future (e.g. 

20 years ahead); using a long period might therefore seem to be of most practical 

relevance, but this is not necessarily the case. PVAs generated now, in practice, will 
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be based on datasets that have been collected for over 30 years, but if we consider 

a test period of 20 years then we will be comparing PVAs that have been generated 

using a dataset that spans only around 10 years. Focusing on a short test period (of, 

say, five years) is, however, not necessarily indicative of the ability of a method to 

generate accurate predictions over longer periods.  

 

We therefore consider four potential test periods lengths within our main (national) 

evaluation: 

 

- 5 years (2013 – 2017) 

- 10 years (2008 – 2017)  

- 15 years (2003 – 2017)  

- 20 years (1998 – 2017)  

 

These choices are designed to cover a range of timespans, and levels of coverage. 

Test periods that are longer than 20 years were not considered, due to the sparsity 

of data within the training period when considering longer test periods. 

 

For the Forth-Tay evaluation we only consider a fove year training period (2013-

2017), because SIPM outputs are only available for a single time period (the period 

ending in 2012). 

 

5.2. Choice of test data to use for evaluation 

 

Within the test period, we focused upon using count data for evaluation. We used all 

available count data within this period for evaluation – i.e., for each species an 

evaluation is performed for every colony-year combination that has data within the 

test period. Let 𝑦𝑖𝑗 denote the observed count for year 𝑗 at colony 𝑖. Where relevant 

(e.g. for guillemot and razorbill) counts are converted into pairs prior to modelling 

and testing, to ensure comparability between species and methods (the SIPM 

models of Freeman et al. 2014 worked with pairs). 

 

We evaluated the performance of different population modelling methods in 

predicting counts in the test period using a range of different criteria (Table 0-6): 

 

- Ability to run model – i.e. whether it is possible to generate a projected 

population size 

- Occurrence of highly implausible results 

- Lack of systematic bias 

- Low error  
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- Accurate quantification of uncertainty 

- Low level of uncertainty 

- Ease of computation – i.e., time for computation 

 

We included all sites that have at least one count within the test period and one 

count within the training period in the evaluation. The requirement to have at least 

one count within the training period is necessary because all population modelling 

methods require at least one observed count from the colony of interest (in order to 

initialize the PVA).  

 

5.3.  PVA outputs 

 

Not all PVA methods will produce predictions for all of these colony-year 

combinations: for some colonies it will be impossible to apply some methods 

because of data sparsity. 

 

Where a PVA method, 𝑘, can be applied, the method will produce: 

 

1) a “best” prediction (predicted mean) 𝜇𝑖𝑗𝑘 for the colony-year combination; and,  

2) for most methods, an estimated distribution of predictions, capturing the 

uncertainty associated with the “best” prediction. 

 

The estimated distribution may either be represented as a theoretical distribution 

(e.g., the cumulative distribution function, CDF, 𝐹𝑖𝑗 associated with a parametric 

probability distribution) or else consist of a set of simulated values that have been 

drawn from this distribution. In either case, we can summarise this distribution in the 

following ways: 

 

a) as the standard deviation of the distribution (“prediction standard error”); 

b) as a 95% prediction interval; or 

c) as the probability of being below or above the observed count. For theoretical 

predictive distributions the probability of being below the observed count can 

be calculated as 𝐹𝑖𝑗𝑘(𝑦𝑖𝑗), and for simulated values it can be calculated as the 

proportion of values that are less than the observed count 𝑦𝑖𝑗.  

 

Regardless of how it is calculated, we let 𝑝𝑖𝑗𝑘 denote the estimated probability of the 

prediction generated by method 𝑘 being below the observed count 𝑦𝑖𝑗. The 

probability of being above the observed count will be equal to one minus this 

quantity. 
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5.4. Evaluations 

 

5.4.1. Main evaluation 

 

Our main evaluation involves applying six different population models (three time 

series models [ATG, ATR, ATZ] and three Leslie matrix models [LDN, LMN, LUN]) to 

all species-colony-test period combinations for which minimum data requirements 

are met. We then compare these against observed numbers of breeding pairs for all 

years within the test period for which counts at the colony are available. Each of the 

PVA methods is applied using nine different possible pooling region classifications – 

the regional definitions given in Table 3 with the exception of R9. These 

classifications are used to pool productivity data (for the Leslie matrix methods: LDN, 

LMN and LUN, see Table 5 for model definitions) or in imputing abundance data (for 

the abundance time series models: ATG, ATR and ATZ, see Table 5 for model 

definitions). Survival rates are, in all cases, based on those in Horswill & Robinson 

(2015). A total of 6 * 9 = 54 PVA methods (combinations of population model and 

pooling region classification) were, therefore, potentially applied for each species-

colony-test period combination.  

 

5.4.2. Forth-Tay evaluation 

 

However, a key interest in this project lies in comparing the SIPM against the other 

methods. The SIPM can be regarded as the current “gold standard” approach 

because it is the approach that makes use of the widest range of data and is the 

most methodologically defensible approach. The approach is more time consuming 

than other approaches to implements, however, in terms of both computational and 

human resources, which  meant that it was not possible to generate additional PVAs 

using this approach within the remit of this project. We therefore focused upon using 

PVAs that were generated using this method in previous projects (Freeman et al. 

2014, Jitlal et al. 2017). The comparison of the SIPM against other methods was 

therefore restricted to a single five year period (2013-2017), a single region (the 

Forth-Tay region, which contains four SPAs) and five species (herring gull, kittiwake, 

guillemot, razorbill and puffin). As for the main evaluation, it was also not possible to 

evaluate all species for all populations. Given the restricted temporal and spatial 

coverage, the results of this evaluation should therefore be interpreted very 

cautiously.  

 

The methodology for this evaluation was, insofar as possible, identical to that for the 

main evaluation, but there were necessarily a number of differences: 
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1. Four additional “population models” (IPM, LDF, LMF, LUF; see Table 5 for 

model definitions) and an additional “pooling region classification” (R9) were 

considered within the Forth-Tay evaluation, but not within the main (national) 

evaluation. One of the additional population models was the SIPM (the 

inclusion of this being the main rationale for running this additional 

evaluation). The other three additional “populations models” (LDF, LMF, LUF; 

see Table 5 for model definitions) were not really distinct new models, but 

were, rather, variants of the Leslie matrix models in which local survival rates 

from the Forth-Tay region were used in place of the species-level rates from 

Horswill & Robinson (2015). These were included in order to ascertain 

whether differences between the SIPM outputs and other methods were due 

to differences in input data (the SIPM uses the local survival rates) or 

differences in model structure. 

 

2. When the abundance time series models were applied using the SPA-level 

pooling regions (R9) the imputation method used by Freeman et al. (2014) 

was used in place of the JNCC imputation method, to ensure consistency in 

the comparison against the SIPM results.  

 

3. For the Forth Islands SPA, the PVA methods were used to produce SPA-level 

predictions (summed across all colonies within the SPA), and these were 

compared against SPA-level counts within the test period (also summed 

across colonies), following the approach used in the SIPM modelling. For 

Fowlsheugh SPA and Buchan Ness to Collieston Coast SPAs, the SPAs 

correspond to a single colony in the SMP data, so no summation across 

colonies is needed in order to produce SPA-level population sizes. For St. 

Abb’s Head to Fast Castle SPA, we follow Jitlal et al. (2017) in only modelling 

one of the colonies within the SPA, St Abbs Head NNR, because of the 

sparse data for the remaining colonies.  
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5.5. Assessing performance 

 

5.5.1. Comparing predicted and observed counts 

 

We compared predicted to observed counts using the log-ratio between them, where 

logs were calculated to base 10. A value of one was added to both predicted and 

observed counts prior to the calculation, in order to deal with the possibility that the 

observed count is zero. In mathematical terms, we considered the following ratio: 

 

𝑟𝑖𝑗 = log10 (
𝑦𝑖𝑗 + 1

𝜇𝑖𝑗 + 1
) 

for each combination of colony and year. 

 

Focusing on log ratios ensures that increases and decreases are dealt with in a 

symmetric way, and ensures that large increases in absolute numbers do not 

dominate the calculations. The use of base ten for the logarithms is to aid 

interpretation; it means that: 

 

- A value of 𝑟𝑖𝑗 = 2 means that the predicted count is 102 = 100 times higher 

than the observed count; 

- A value of 𝑟𝑖𝑗 = −2 means that the predicted count is 10−2 = 1/100th the value 

of the observed count; 

- A value of 𝑟𝑖𝑗 = 0 means that the predicted and observed counts are identical. 

 

5.5.2. Measures of performance 

 

For each species-colony-year-method combination for which an evaluation was 

possible, we assessed the ability of the method to predict the observed count using a 

range of criteria, and then averaged these criteria across colonies, year and species 

to look at the overall performance of each method. It should be noted that the set of 

species, colonies and years for which an evaluation is possible is neither a random 

sample of the set of all species, colonies and years, nor likely to be representative of 

that set, so the results of these evaluations should be interpreted cautiously. 

 

We focused upon seven different criteria for assessing for performance, which we 

represented as a hierarchy – the criteria that are lower in the hierarchy are only 

relevant if a method performs well at the higher levels. 

 

C1: Ability to run. The first criterion assesses whether the method is able to 

produce a prediction at all – i.e., whether the minimum data requirement for 
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producing a population model is met, and whether the method can be used to 

successfully generate a prediction (e.g., no fatal problems with non-convergence or 

fitting are encountered). For any particular combination this criterion can simply be 

represented by a binary variable, which is either one (prediction fails to be produced) 

or zero (prediction can be produced); by averaging across years, colonies and 

species we can estimate the percentage of situations in which each method fails. 

Note that we did not assess SIPMs against this criteria, because for the Forth-Tay 

evaluation we only focused on the species-SPA combinations for which SIPMs had 

already been run. 

 

C2: Occurrence of highly implausible results. Methods sometimes run, but 

produce highly implausible predictions – e.g., predicted colony sizes that are many 

thousands of times higher than the current colony size. We classed a result as being 

“highly implausible” if |𝑟𝑖𝑗| > 2 – i.e., if the predicted count was more than 100 times 

the observed count or less than 1/100th of the observed count. This definition is 

clearly very conservative – we only classed a result as being “highly implausible” if 

the method produced predictions that differ from the observed count by an extremely 

wide margin. In practice, we anticipate that the PVA outputs that we class as “highly 

implausible” are so different to observed abundance values that they would always, 

or almost always, be flagged as being implausible based on expert judgement, and 

so would not actually be used. We calculated the percentage of results that are not 

highly implausible (NHI): ideally, this should be close to 100%. 

 

C3: Lack of systematic bias. The next criterion assessed whether the method 

produced predictions that systematically over-estimated or under-estimated the true 

(logged) counts. We calculated this by looking at the mean or median value of the 

log-ratio 𝑟𝑖𝑗, averaged across colonies, years, and, where relevant, species. Note 

that “highly implausible” results were excluded when calculating this (and 

subsequent) criterion. This value should ideally be close to zero. 

 

C4: Low error in specific situations. A method that is systematically unbiased may 

nonetheless show considerable error – i.e., the method can over-estimate the true 

count in some situations, and under-estimate it in others, even if it shows no overall 

tendency to underestimation or overestimation. 

 

We quantified this by focusing solely on the size, or magnitude, of the difference, 

|𝑟𝑖𝑗|, and averaging this magnitude across years, colonies and, where relevant, 

species (using either the mean or median). 
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C5: Reliable quantification of uncertainty. It is important that methods not only 

provide reliable predictions, but that they provide a reliable quantification of 

uncertainty. A simple way to evaluate this is by testing whether the observed count 

lies within the 95% prediction interval (1) or not (0). We calculated the percentage of 

situations in which this occurred. This would ideally be close to 95%. 

 

C6: Level of uncertainty. All else being equal, it is desirable for the level of 

uncertainty associated with the prediction to be as low as possible. We therefore 

report the width of the 95% prediction interval. This should ideally be as small as 

possible. Note, however, that this criterion is only meaningful if the previous criterion 

is met – i.e. a low level of uncertainty is only desirable if the confidence intervals also 

have adequate coverage (i.e. contain the true value close to 95% of the time). 

 

C7: Ease of computation. The final criterion refers to the practicality of 

implementing each method. We quantified this by the total computer time, in 

seconds, required to generate PVA predictions using each method. 

 

These criteria are summarised in Table 0-6. 

 

5.5.3. Summarising performance 

 

We averaged each of these criteria of performance across colonies and years, to 

report overall performance of each method, species and test-training split at a range 

of different levels of spatial aggregation. As well as summarising overall performance 

for each test-training split, we also showed how performance varied in relation to the 

length of the gap between the final count in the training period and the year being 

used for method evaluation. 

 

We also looked at the percentage of evaluations for which each method was the 

“best” method – either the method with the minimum absolute difference between 

predicted and observed values, or the minimum value of |𝑟𝑖𝑗|. By considering 

differences in absolute values, as well as ratios, we can check whether our focus on 

ratios, in the other criterion, is missing some aspect of performance. 

 

One possible issue with these evaluations derives from the fact that not all methods 

could be applied in all situations. In order to account for the potential effects of this, 

we also run a separate additional set of evaluations solely using the species-colony-

test period combinations for which it is possible to run all methods.  
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6. Results 

 

6.1. National evaluation 

 

We compared the performance of 54 different methods for performing population 

modelling forecasts – these were all possible combinations of six statistical methods 

for population models (ATG, ATR, ATZ, LDN, LMN, LUN; see Table 5 for model 

definitions) and nine methods for regional pooling (R0-R9; Table 3). 

 

6.1.1. Raw results 

 

The raw outputs from the population models recorded the observed count, predicted 

mean, predicted SE, and the value of the CDF at the observed count (pij) for each 

combination of test-training split, reporting region, species, colony, year and 

modelling method for which an assessment was possible.  

 

The raw outputs are included, as a CSV file, in the Supplementary Information (SI1).  

 

6.1.2. Criterion 1 – ability to run 

 

We calculated the percentage of situations in which each particular population 

modelling method could be used. For each combination (of test-training split, 

reporting region, species, colony, year and method) a binary variable was used to 

indicate whether the method could be applied (1) or not (0): these were then 

averaged across year, colony and species to get an overall assessment of the range 

of situations in which each method could be run. 

 

The overall results, averaged across species, are shown below (Figure 2); a 

breakdown by species is given in the electronic supplementary material. 

 

The percentage of situations in which assessments could be run was highest for the 

regional versions of the Leslie matrix approaches (LDN, LMN, LUM) where regional 

classifications that include a fairly small number of regions were used (R3, R4, R5, 

R7, R8), with percentages of over 80% in most cases. The percentage of 

assessments able to be run dropped off in regional classifications with larger 

numbers of regions (R2 & R1) to around 50-60% for the Leslie Matrix approaches. 

The most local versions of the Leslie matrix approaches run at the site level (R0) 

were possible in around 20% of cases. 
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The time series approaches (ATG, ATR, ATZ) were possible in many fewer cases, 

with between 10% and 20% of potential assessments possible, regardless of the 

regional pooling method. 

 

 

 

 

  

Figure 2: Summary of Assessment Criterion 1 – ability to run. The percentage of all 
potential model runs that were possible (i.e., that achieved minimum data requirements), 
calculated across all combinations of species and colony. Each cell represents the 
percentage of runs that were possible for each statistical modelling method (y-axis) and 
pooling region classification (x-axis). Modelling methods were: ATG: simple time series 
growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix 
deterministic model; LMN: Leslie Matrix Stochastic model with productivity constrained; 
LUN: Leslie Matrix Stochastic model with productivity unconstrained. Reporting regions 
were: R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: 
Cook & Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: 
OSPAR; R8: Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel 
Islands and Isle of Man).  
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6.1.3. Exploratory graphs 

 

We produce scatterplots (Figures Figure 3-Figure 7) of observed against predicted 

counts for each combination of statistical method and pooling method. The results 

show that, for all statistical and pooling methods, there is considerable variability in 

performance between species, sites and years - there are many combinations for 

which observed and predicted counts are quite similar (i.e., close to the 1:1 line), but 

also a large proportion of combinations for which there are substantial differences 

between them. Within each statistical method the results are qualitatively similar for 

all pooling region classifications (R0-R8). 

 

There are however, some consistent differences between the different statistical 

methods. The Leslie matrix models (Figures Figure 3-Figure 5) frequently show large 

differences between observed and predicted counts, whereas the time series models 

(Figure 6-Figure 7) tend, overall, to show rather smaller differences. The time series 

models, however, do sometimes predict extremely high abundance values (in excess 

of 1 million), whereas this does not happen with the Leslie matrix models. 

Surprisingly, the Leslie matrix models never predict abundances of zero, but the time 

series models predict this relatively frequently – future work fully investigating why 

this is the case would be worthwhile. 
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Figure 3: Scatter plots for observed versus predicted abundance over all species using the 
deterministic Leslie Matrix model (LDN). Each panel represents models using demographic 
data (productivity) from different pooling regions. Pooling regions were: R0: site level; R1: 
SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). Top/bottom lines are where |rij |<2. 
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Figure 4: Scatter plots for observed versus predicted abundance over all species using the 
stochastic Leslie Matrix model with constrained productivity (LMN). Each panel represents 
models using demographic data (productivity) from different pooling regions. Pooling regions 
were: R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook 
& Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; 
R8: Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and 
Isle of Man). Top/bottom lines are where |rij |<2. 
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Figure 5: Scatter plots for observed versus predicted abundance over all species using the 
time series simple growth model (ATG). Each panel represents models using demographic 
data (productivity) from different pooling regions. Pooling regions were: R0: site level; R1: 
SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). Top/bottom lines are where |rij |<2. 
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Figure 6: Scatter plots for observed versus predicted abundance over all species using the 
time series Ricker model (ATR). Each panel represents models using demographic data ( 
productivity) from different pooling regions. Pooling regions were: R0: site level; R1: SMP 
regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson Abundance; R5: 
Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in 
England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). Top/bottom 
lines are where |rij |<2. 
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Figure 7: Scatter plots for observed versus predicted abundance over all species using the 
time series Gompertz model (ATZ). Each panel represents models using demographic data 
(productivity) from different pooling regions. Pooling regions were: R0: site level; R1: SMP 
regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson Abundance; R5: 
Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in 
England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). Top/bottom 
lines are where |rij |<2. 
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6.1.4. Criterion 2 – occurrence of highly implausible results 

 

We used an extreme criterion to classify results as “highly implausible” (predicted 

abundances that were more than 100 times larger or smaller than the observed 

abundance), and therefore expected that methods should ideally have 100% of 

results classed as “Not Highly Implausible” (NHI). 

 

When we looked across all combinations of species, colonies and years (Figure 8), it 

appears that the Leslie Matrix methods (LDM, LMN, LUN) result in substantially 

more highly implausible results than the time series methods. However, this is due to 

the much greater number of instances in which the Leslie Matrix methods can be 

applied (Figure 2), so these results include species-colony combinations for which 

data availability is poor, conditions in which any population modelling method is likely 

to perform poorly.  

 

Therefore, assessing the different modelling methods across only those instances 

where all modelling methods could be assessed results in a fairer comparison. When 

we focus only upon the instances where all modelling methods could be applied 

(Figure 9), we see that the three Leslie Matrix approaches (LDN, LMN, LUN) 

performed consistently well, with only a very small proportion of results being flagged 

as highly implausible. The time series methods (ATG, ATR, ATZ) performed less 

well, with more than 5% of results being flagged as highly implausible in some 

situations. The simple growth model (ATG) resulted in the highest number of highly 

implausible results. 

 

Using the mean rather than median predicted abundance (Figure 10), resulted in 

many more highly implausible results, particularly for the time series methods (ATG, 

ATR, ATZ). This is because some individual simulations of the time series models 

produced extremely large or small future population sizes, and these simulations 

impact the mean far more than the median. This highlights the importance of using 

different assessment criteria in the assessment of population models; in particular, it 

highlights the importance of interpreting the mean population size, averaged across 

simulations, carefully, given that the mean can be highly sensitive to the existence of 

extreme values. 
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Figure 8: Assessment Criterion 2 – occurrence of highly implausible results. Shown as 
the percentage of median predicted population sizes that are ‘not highly implausible’, 
calculated across of all species, colonies and years. Modelling methods were: ATG: 
simple time series growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: 
Leslie Matrix deterministic model; LMN: Leslie Matrix Stochastic model with productivity 
constrained; LUN: Leslie Matrix Stochastic model with productivity unconstrained. 
Reporting regions were: R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC 
regional seas; R4: Cook & Robinson Abundance; R5: Cook & Robinson Breeding 
Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in England, Northern Ireland, 
Scotland, Wales, Channel Islands and Isle of Man). 
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Figure 9: Assessment Criterion 2 – occurrence of highly implausible results. Shown as 
the percentage of median predicted population sizes that are ‘not highly implausible’, 
calculated across the subset of species, colonies and years for which all possible 
methods could be assessed.  Modelling methods were: ATG: simple time series growth 
model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic 
model; LMN: Leslie Matrix Stochastic model with productivity constrained; LUN: Leslie 
Matrix Stochastic model with productivity unconstrained. Reporting regions were: R0: 
site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & 
Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: 
OSPAR; R8: Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel 
Islands and Isle of Man). 
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Figure 10: Assessment Criterion 2 – occurrence of highly implausible results. Shown as the 
percentage of mean predicted population sizes that are ‘not highly implausible’, calculated 
across the subset of species, colonies and years for which all possible methods could be 
assessed. Modelling methods were: ATG: simple time series growth model; ATR: Ricker 
model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie Matrix 
Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model with 
productivity unconstrained. Reporting regions were: R0: site level; R1: SMP regions; R2: 
ICES regions; R3: JNCC regional seas; R4: Cook & Robinson Abundance; R5: Cook & 
Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in England, 
Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
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6.1.5. Criterion 3 – Systematic bias 

 

For this and later criteria, we focus solely on the subset of species-colony-year 

combinations for which all methods can be applied, because this gives the fairest 

basis for comparison. The results obtained by averaging across all combinations of 

species, colonies and years are shown in the Electronic Supplementary Information. 

 

Levels of bias for median predicted abundance are generally lower for the time 

series methods than the Leslie matrix models, with the Leslie matrix methods 

tending to produce median abundance estimates that consistently underestimated 

the observed abundances in the test periods (Figure 11). There was no obvious 

change in bias across the different pooling regions for any of the modelling methods. 

However, for all methods, bias tended to become increasingly positive as the length 

of the training period increased (Figure 11).  

 

Calculating bias using mean rather than median predicted abundance (Electronic 

Supplementary Information) led to different results: in this case the systematic bias 

for the Leslie matrix methods (LDN, LMN and LUN) was consistently lower than that 

for the time series models, and the simple growth (ATG) and Gompertz (ATZ) 

models had particularly high levels of bias. The biases for the time series methods 

tended to be positive (greater than zero in the legend), implying that these methods 

tended to systematically predict higher abundances than those observed.  
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Figure 11: Assessment Criterion 3 – Systematic bias. Shown as the bias averaged across 
all species, colonies and years. Bias is calculated using the median predicted abundance 
from each model, and is calculated across the subset of species, colonies and years for 
which all possible methods could be assessed. Modelling methods were: ATG: simple time 
series growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix 
deterministic model; LMN: Leslie Matrix Stochastic model with productivity constrained; LUN: 
Leslie Matrix Stochastic model with productivity unconstrained. Reporting regions were: R0: 
site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & 
Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; 
R8: Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and 
Isle of Man). 
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6.1.6. Criterion 4 – Error 

 

The results for error were qualitatively similar to those for bias. The errors associated 

with median predicted abundance were generally similar for different methods, but 

tended to be lowest for the simple growth and Ricker models, intermediate for Leslie 

matrix models, and highest for the Gompertz model (Figure 12). The level of regional 

pooling had very little impact on the magnitude of error associated with any of the 

modelling methods. Error decreased as the length of the training period increased for 

all methods (Figure 12). 

 

Errors associated with mean predicted abundance (Electronic Supplementary 

Information) were, by contrast, consistently much higher for the time series models 

than the Leslie matrix models (with the Gompertz model, in particular, having very 

high levels of error in the mean predicted abundance).  
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Figure 12: Magnitude of error for median predicted abundances, averaged across all 
species, colonies and years. Error is calculated using the median predicted abundance from 
each model, and is calculated across the subset of species, colonies and years for which all 
possible methods could be assessed. Modelling methods were: ATG: simple time series 
growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic 
model; LMN: Leslie Matrix Stochastic model with productivity constrained; LUN: Leslie Matrix 
Stochastic model with productivity unconstrained. Reporting regions were: R0: site level; R1: 
SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). 

  



53 
 

6.1.7. Criterion 5 – Quantification of uncertainty 

 

Coverage (percent of observed abundances that were within the predicted 95% 

confidence interval) was good for all three of the time-series approaches, generally 

around 90% (Figure 13). There was little variation in coverage across the different 

pooling regions for any of the methods, suggesting that regional pooling did not 

strongly affect whether observed abundances were captured by the confidence 

intervals around time series model predictions.  

 

The two versions of the stochastic Leslie matrix performed poorly in terms of 

quantification of uncertainty. Both models considerably underestimated uncertainty, 

with only around 20% of observed abundances being captured by the predicted 95% 

confidence intervals (LMN and LUN; Figure 13).  

 

The deterministic Leslie matrix approach does not allow for any quantification of 

uncertainty, so automatically performed extremely poorly on this criterion. 

 

6.1.8. Criterion 6 – Magnitude of uncertainty 

 

For methods that provide an accurate representation of uncertainty, it is also 

important to consider how wide the predicted confidence intervals were for each 

method, because very wide confidence intervals do not necessarily provide useful 

information within PVA assessments. Of the three time-series methods, the 

Gompertz model in particular generated extremely wide confidence intervals (Figure 

14), with the simple growth and Ricker model methods also generating confidence 

intervals that were very large, detracting from the usefulness of these methods. The 

width of the confidence intervals for both stochastic Leslie matrix approaches was 

narrow (Figure 14), but since the confidence intervals for these methods had poor 

coverage this just seems to represent the fact that these methods are failing to 

accurately capture uncertainty.  
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Figure 13: Accuracy of uncertainty quantification, assessed as the percentage of observed 
abundances that fell within the predicted 95% confidence interval for each model, calculated 
across the subset of species, colonies and years for which all possible methods could be 
assessed. Modelling methods were: ATG: simple time series growth model; ATR: Ricker 
model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie Matrix 
Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model with 
productivity unconstrained. Reporting regions were: R0: site level; R1: SMP regions; R2: 
ICES regions; R3: JNCC regional seas; R4: Cook & Robinson Abundance; R5: Cook & 
Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in England, 
Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
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Figure 14: Magnitude of uncertainty, represented as log10(width of 95% confidence interval) 
for each model,  averaged across the subset of species, colonies and years for which all 
possible methods could be assessed. Modelling methods were: ATG: simple time series 
growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic 
model; LMN: Leslie Matrix Stochastic model with productivity constrained; LUN: Leslie Matrix 
Stochastic model with productivity unconstrained. Reporting regions were: R0: site level; R1: 
SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). Note that white and grey indicate the 95% confidence intervals were so wide as to be 
outside of the range used in generating the colour legend. 
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6.1.9. Criterion 7 – Time for computation 

The differences in speed between methods were substantial (Figure 15). The 

slowest methods were the stochastic Leslie Matrix methods, followed by the 

deterministic Leslie Matrix, and then the three time series methods. However, the 

computational times associated with the deterministic Leslie Matrix and the time 

series methods (a few seconds) are likely to be negligible in most practical 

situations. Note that this comparison does not include the SIPM models from the 

Forth-Tay region (see next section), which takes a considerable amount of time and 

expertise to successfully fit in many cases. 
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Figure 15: Assessment of time required for computation for each method (in log10 seconds), 
averaged across the subset of species, colonies and years for which all possible methods 
could be assessed. Modelling methods were: ATG: simple time series growth model; ATR: 
Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie 
Matrix Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model 
with productivity unconstrained. Reporting regions were: R0: site level; R1: SMP regions; 
R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson Abundance; R5: Cook & 
Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in England, 
Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
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6.1.10. Percentage of occasions where each model performed the best 

 

We consider the percentage of situations (species-colony-year combinations) in 

which each pooling method and statistical method provided the best performance. 

We assessed the “best” method as that which minimised the absolute difference 

between the observed and predicted count. It is possible that these comparisons will 

be heavily influenced by species-colony combinations with high mean abundance, so 

we also considered an alternative definition of the “best” method, by determining 

which method minimised the absolute value of log(predicted count/observed count). 

However, this assessment led to qualitatively similar results, and so is only included 

in the Electronic Supplementary Information.  

 

We begin by considering the percentage of times that each combination of statistical 

method and pooling method provided the best performance. If we consider all 

possible combinations of species, colony and year then the Leslie matrix models 

have the highest percentages, because these models can be applied in all situations 

(Figure 16). However, if we focus only on the situations where all methods can be 

applied, then the time series models, particularly the Gompertz model, have the 

highest percentages (Figure 17). Whichever way the evaluation is performed, 

however, no specific combination of statistical method and pooling method has a 

high percentage of being the best method. The percentages are typically lower than 

5% for all combinations of methods, and almost never exceed 10%. The results of 

these evaluations should therefore, be interpreted with great caution, as they 

suggest that the “best” method is highly variable between species, colonies and 

years. 

 

In order to tease apart the differences in performance between methods, we 

therefore focus on assessing the percentage of times that each statistical method is 

best, for each choice of pooling method, and vice versa. 

 

We begin by focusing upon the choice of statistical method. In Figure 18 we focus 

upon the best choice of method, calculated across all species-colony-year 

combinations, for each choice of pooling method. The Leslie matrix methods are 

most often the “best” method, with Leslie matrix methods collectively being the best 

methods in more than 50% of colony-site-year combinations in almost all 

circumstances – the one exception is when pooling method R0 was used, and the 

test period was 2013-2017. In general, the Leslie matrix methods were much more 

often the best method when regional pooling of any form was used (R1-R8), but 

were only slightly more often the “best” model in comparison to the time series 

models when there was no regional pooling (R0).  
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However, if we focus only on situations in which all methods can be compared, the 

results look very different. Time series models now collectively perform best in all 

situations (i.e. for all levels of regional pooling, and all test period definitions), and 

their advantage is greatest when regional pooling is used (R1-R8). These two sets of 

results can be interpreted as follows: 

 

- Leslie matrix models can be applied in many more situations than time series 

models, but; 

- In situations where time series models can be used, they will often provide the 

best performance. 

 

Within the time series models, the best performing models tend to be either the 

Gompertz or simple growth models.  

  

We compared model performance (predicted versus observed abundance) in 

relation to the definition of the regions used for spatial pooling of demographic 

information. This is of most relevance to the Leslie matrix approaches, where 

regional pooling of productivity rates is widely used in practice. This is primarily 

because Leslie matrix methods with regional pooling of demographic rates can be 

used in very data-sparse situations where other modelling methods cannot be used. 

The regional pooling regions we considered (for pooling productivity values and, for 

the time series models, for imputing abundance values)  (Table 0-3) were: 

 

- R0: site level;  

- R1: SMP regions;  

- R2: ICES regions;  

- R3: JNCC regional seas;  

- R4: Cook & Robinson Abundance;  

- R5: Cook & Robinson Breeding Success;  

- R6: MSFD;  

- R7: OSPAR;  

- R8: Global (all colonies in England, Northern Ireland, Scotland, Wales, 

Channel Islands and Isle of Man). 

 

The key comparison to consider here is between site-specific methods without any 

regional pooling (R0), regional pooling methods that use a large number of fairly 

small spatial regions (R1, which has 114 regions), and regional pooling methods 

based on a small number of fairly large spatial regions (methods R2-R8, which 

contain between 1 and 11 regions). 
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When we consider all combinations of species, colonies and species, there is high 

variability in the “best” pooling method, with no indication that any method 

consistently outperforms any other (Figure 20).  

 

When we focus only on combinations for which all methods could be applied, local 

methods, which avoid much regional pooling (R0 and R1) tend to have the best 

performance in a higher proportion of situations than the methods that allow for 

regional pooling. Methods that allow for a higher level of regional pooling (R2 to R8) 

still, however, collectively account for the “best” method in over 60% of all situation, 

indicating that there is substantial variability in whether pooling improves 

performance or not.  
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Figure 16: Assessment of which method (combination of statistical modelling method and 
pooling region classification), performed the best averaged across the full set of all species, 
colonies and years. Performance was assessed by selecting the percentage of instances in 
which each method led to a median prediction that was closer (in absolute value) to the 
observed count than any other method. Modelling methods were: ATG: simple time series 
growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic 
model; LMN: Leslie Matrix Stochastic model with productivity constrained; LUN: Leslie Matrix 
Stochastic model with productivity unconstrained. Reporting regions were: R0: site level; R1: 
SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). 

  



62 
 

 

Figure 17: Assessment of which method (combination of statistical modelling method and 
pooling region classification) performed the best, averaged across only those combinations 
of species, colony and year for which all possible methods could be applied. Performance 
was assessed by selecting the percentage of instances in which each method led to a 
median prediction that was closer (in absolute value) to the observed count than any other 
method. Modelling methods were: ATG: simple time series growth model; ATR: Ricker 
model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie Matrix 
Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model with 
productivity unconstrained. Reporting regions were: R0: site level; R1: SMP regions; R2: IC 
ES regions; R3: JNCC regional seas; R4: Cook & Robinson Abundance; R5: Cook & 
Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all colonies in England, 
Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
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Figure 18: Percentage of species-colony-year combinations for which each statistical 
method has the best performance (in terms of having the lowest absolute difference between 
the median predicted value and the observed count), calculated separately for each pooling 
method and each test period definition. Percentages were calculated using all species, 
colony, year combinations. 
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Figure 19: Percentage of species-colony-year combinations for which each statistical 
method has the best performance (in terms of having the lowest absolute difference between 
the median predicted value and the observed count), calculated separately for each pooling 
method and each test period definition. Percentages were either calculated across the 
subset of species, colonies and years for which all possible methods could be assessed. 
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Figure 20: Percentage of species-colony-year combinations for which each pooling method 
has the best performance (in terms of having the lowest absolute difference between the 
median predicted value and the observed count), calculated separately for each statistical 
method and each test period definition. Percentages were calculated using all species, 
colony, year combinations. 
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Figure 21: Percentage of species-colony-year combinations for which each pooling method 
has the best performance (in terms of having the lowest absolute difference between the 
median predicted value and the observed count), calculated separately for each statistical 
method and each test period definition. Percentages were calculated across the subset of 
species, colonies and years for which all possible methods could be assessed. 
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6.1.11. Relation to time since last training period 

 

We examined if performance of the different modelling methods was related to the 

gap between the year in which evaluation occurred (i.e., the year with the observed 

count within the test period against which the prediction was compared) and the year 

used to initialise the model (i.e., the year with the latest observed count within the 

training period at the colony of interest). This was because we expected levels of 

error and bias to increase as the length of this gap increased, and also to investigate 

if there was an evidence that some of the modelling methods were more robust to 

longer gaps between the year of initialisation of the model and the subsequent year 

in which the comparison for observed versus predicted was made.  

 

The percentage of highly implausible results (more than or less than 100 times the 

observed abundance) increased as the length of this gap increased (Figure 22: ).  

 

The level of bias in predictions also increased as the length of the gap between the 

last year of data used in model fitting or initialisation and the year in which 

comparisons of predicted versus observed abundance were made (Figure 23). Bias 

was generally low across all modelling methods when gaps were very short (1-3 

years), however as gaps increased, bias became much more pronounced, with most 

methods tending to overestimate the observed abundance (Figure 23). This increase 

in bias with increasing gap width was most pronounced for the time series simple 

growth model, which increasingly overestimated observed abundance as the length 

of the gap exceeded around five years (Figure 23). Of all the modelling methods, the 

time series Ricker model appeared to be the most robust to maintaining low levels of 

bias as the length of the gap increased, followed by the stochastic Leslie matrix 

methods (Figure 23).  

 

In terms of the overall magnitude of error, all methods showed an increase in error 

as the length of the gap increased. For most methods, error started to increase 

significantly as the gap reached over five years, with the three Leslie matrix methods 

reaching the highest levels of absolute error across all modelling methods once the 

gap had exceeded more than ten years. The notable exception was the time series 

Ricker model, which maintained relatively lower levels of error with increasing gap 

length up to around ten years, when compared to the other modelling methods.  

 

There was relatively little impact of the length of the gap on the percentage of 

observed abundances that were within the predicted 95% confidence interval for 

each method (Figure 25). For the time series methods this was likely because the 

width of the confidence intervals increased greatly as the length of the gap increased 
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(Figure 26), meaning that the percentage of times the observed abundance fell 

within the predicted confidence interval remained high at around 80-90% for all three 

time series methods (Figure 25). For the Leslie matrix methods, this was because 

the length of the gap had very little impact on the width of the confidence intervals 

(Figure 26), meaning that the percentage of times the observed abundance was 

within the predicted confidence interval remained low (around 30%) regardless of the 

length of the gap (Figure 25).  

 

The percentage of times each model was the best performing model showed no 

obvious relationship with the length of period (Figure 27). 

 

The relationships between these assessment criteria and the length of the gap 

appeared to be fairly similar, regardless of the definition of the test period. This 

suggests that it was the data gap between initialisation and testing at the colony of 

interest, rather than the overall breakdown of the data into training and test periods, 

that was of key relevance in determining levels of accuracy, bias and coverage. 
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Figure 22: Percentage of median predicted population sizes that are “not highly 
implausible”, averaged across the subset of species, colonies and years for which all 
possible methods could be assessed, expressed in relation the number of years between the 
evaluation year and initial count for one particular regional pooling classification (site-level, 
R0). Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; 
ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie Matrix 
Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model with 
productivity unconstrained. 
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Figure 23: Median bias, averaged across the subset of species, colonies and years for 
which all possible methods could be assessed, expressed in relation the number of years 
between the evaluation year and initial count for one particular regional pooling classification 
(site-level, R0). Modelling methods were: ATG: simple time series growth model; ATR: 
Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie 
Matrix Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model 
with productivity unconstrained. 
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Figure 24: Median error, averaged across the subset of species, colonies and years for 
which all possible methods could be assessed, expressed in relation the number of years 
between the evaluation year and initial count for one particular regional pooling classification 
(site-level, R0). Modelling methods were: ATG: simple time series growth model; ATR: 
Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie 
Matrix Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model 
with productivity unconstrained. 
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Figure 25: Percentage of times the observed abundance was within the 95% confidence 
interval, calculated across the subset of species, colonies and years for which all possible 
methods could be assessed, expressed in relation the number of years between the 
evaluation year and initial count for one particular regional pooling classification (site-level, 
R0). Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; 
ATZ: Gompertz model; LDN: Leslie Matrix deterministic model; LMN: Leslie Matrix 
Stochastic model with productivity constrained; LUN: Leslie Matrix Stochastic model with 
productivity unconstrained. 
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Figure 26: Median log10(width of confidence interval), calculated across the subset of 
species, colonies and years for which all possible methods could be assessed, expressed in 
relation the number of years between the evaluation year and initial count for one particular 
regional pooling classification (site-level, R0). Modelling methods were: ATG: simple time 
series growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: Leslie Matrix 
deterministic model; LMN: Leslie Matrix Stochastic model with productivity constrained; LUN: 
Leslie Matrix Stochastic model with productivity unconstrained. Note that white and grey 
indicate the 95% confidence intervals were so wide as to be outside of the range used in 
generating the colour legend. Note that white and grey indicate the 95% confidence intervals 
were so wide as to be outside of the range used in generating the colour legend. 
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Figure  

Figure 27: Assessment of which method (combination of statistical modelling method and 
pooling region classification) performed the best, calculated across the subset of species, 
colonies and years for which all possible methods could be assessed, expressed in relation 
the number of years between the evaluation year and initial count for one particular regional 
pooling classification (site-level, R0). Performance was assessed by selecting the 
percentage of instances in which each method led to a median prediction that was closer (in 
absolute value) to the observed count than any other method. Modelling methods were: 
ATG: simple time series growth model; ATR: Ricker model; ATZ: Gompertz model; LDN: 
Leslie Matrix deterministic model; LMN: Leslie Matrix Stochastic model with productivity 
constrained; LUN: Leslie Matrix Stochastic model with productivity unconstrained. 
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6.2. Comparison for Forth-Tay SPAs 

 

SIPMs were produced by Freeman et al. (2014) for 14 populations (species-by-SPA 

combinations) in the Forth-Tay region – these populations are listed in  

Table 6-1, and the number of years for which an evaluation of performance was 

possible within the test period (2013-2017) is shown for each population. In total, 

evaluation was possible for 35 of the 70 (i.e. 50%) of the possible species-SPA-year 

combinations, but there was considerable variation between populations. For five 

populations an evaluation was possible in all five years, for two populations it was 

possible in two of the five years, for six populations it was only possible in a single 

year, and for one population (Herring Gull – Forth Islands) it was not possible in any 

year.  

 

Table 6-1 
 
Populations used in the Forth-Tay evaluation, and the set of years within the test 
period for which an evaluation of performance was possible (i.e. for which an SPA-
wide count of abundance was available). 
 

Species SPA Evaluation possible? # years of 
evaluation 

2013 2014 2015 2016 2017  

Black-legged 
kittiwake 

Forth Islands Yes Yes Yes Yes Yes 5 

St Abbs to Fast Castle Yes Yes Yes Yes Yes 5 

Fowlsheugh   Yes   1 

Buchan Ness to Collieston    Yes  1 

Common 
guillemot 

Forth Islands Yes Yes Yes Yes Yes 5 

St Abbs to Fast Castle Yes   Yes  2 

Fowlsheugh   Yes   1 

Buchan Ness to Collieston    Yes  1 

Razorbill Forth Islands Yes Yes Yes Yes Yes 5 

 St Abbs to Fast Castle Yes   Yes  2 

 Fowlsheugh   Yes   1 

Herring Gull Forth Islands      0 

St Abbs to Fast Castle Yes Yes Yes Yes Yes 5 

Atlantic Puffin Forth Islands Yes     1 
 

 

We summarised performance for all modelling methods in the Forth-Tay comparison, 

across all combinations of statistical method and regional pooling method, by 

averaging across all species-colony-year combinations using the testing period 

starting in 2013 (Figure 28 and  

 

Figure 29). 
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6.2.1. Criterion 1 – Ability to run 

 

Within the Forth-Tay region (R9), the SIPM could be run in all circumstances, as 

could the various Leslie Matrix methods, however the three time-series methods 

could only be run in around 80-90% of instances (Figure 28). The fact that the SIPM 

can be run in all situations is true by definition, as we only focused here upon the set 

of SPAs for which an SIPM had already been run, and upon a region (the Forth-Tay) 

where there was sufficient data to be able to fit these models for a range of species 

and SPAs. Therefore, this result would not generalise to other regions or species. In 

general, we might expect that SIPMs can be applied in a similar set of situations to 

those in which time series models can be applied, since the key restriction to their 

use, in terms of data availability, is the fact that they can only be applied to 

populations for which data on abundance are collected relatively frequently. 

 

6.2.2. Criterion 2 - Occurrence of highly implausible results 

 

The occurrence of highly implausible results (more than 100 times above or below 

the observed abundance) was very low for all methods in the Forth-Tay region (R9). 

When using the mean predicted abundance, the SIPM, all Leslie Matrix methods and 

the simple growth time series method resulted in 100% of predictions that were not 

highly implausible, with the Ricker model resulting in around 95% of predictions that 

were not highly implausible (Figure 28). When using the median predicted 

abundance, all methods resulted in 100% of results that were not highly implausible 

(not shown).  

 

6.2.3. Criterion 3 - Systematic bias 

 

Systematic bias was very low for all modelling methods in the Forth-Tay region, 

although marginally higher for the Gompertz time series method compared to the 

other modelling approaches (Figure 28). 

  

6.2.4. Criterion 4 – Error 

 

Similarly, all modelling methods resulted in low error in the Forth-Tay region (R9), 

again with the exception of the Gompertz time-series method which resulted in 

considerably more error than any of the other methods (Figure 28).  
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Figure 28: Summary of results for the Forth-Tay comparison for all modelling methods for 
Assessment Criterion 1 to 4. Criterion 1 is the percent of occasions where it was possible to 
use the modelling method to generate a prediction (top left panel). Criterion 2 is the 
occurrence of highly implausible results estimated using the mean predicted abundance 
from each modelling method (top right panel). Criterion 3 is the level of bias in model 
predictions using the median predicted abundance from each modelling method (lower left 
panel). Criterion 4 is the magnitude of error in model predictions using the median predicted 
abundance from each modelling method (lower right panel). Each criterion is produced by 
averaging over all species by SPA comparisons that were possible within the Forth-Tay 
region, using a model testing period starting in 2013. Pooling regions were: R0: site level; 
R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; 
ATZ: Gompertz model; IPM: Semi-Integrated Population Model; LDF: Leslie Matrix 
determinisitic model parameterised using national rates; LDN: Leslie Matrix deterministic 
model parameterised using Forth-Tay rates; LMF: Leslie Matrix stochastic model with 
constrained productivity parameterised with Forth-Tay rates; LMN: Leslie Matrix Stochastic 
model with constrained productivity parameterised with National rates; LUF: Leslie Matrix 
stochastic model with unconstrained productivity parameterised with Forth-Tay rates; LUN: 
Leslie Matrix Stochastic model with unconstrained productivity parameterised with National 

rates. 
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6.2.5. Criterion 5 - Quantification of uncertainty 

 

The SIPM method and time series simple growth and Ricker models all performed well in 

terms of the percentage of observed abundances that were within the 95% predicted 

confidence intervals (around 90%; Figure 29), whilst the Gompertz time series method 

achieved 100% of observed abundances within the predicted confidence intervals (Figure 

29). 

The Leslie matrix methods performed more poorly, with around 60% of observed 

abundances falling within the predicted 95% confidence intervals, indicating that these 

methods may severely underestimate uncertainty (Figure 29). 

 

6.2.6. Criterion 6 – Magnitude of uncertainty 

 

Of the methods that produced accurate representations of uncertainty, the SIPM produced 

substantially narrower 95% credible intervals than the 95% confidence intervals produced by 

the time series methods, although the credible/confidence intervals associated with these 

methods were all very wide. The Gompertz model produced the widest intervals of all.  

 

6.2.7. Criterion 7 - Computational time 

 

Computation time was similar over all modelling methods apart from the SIPM, being lowest 

for the time series simple growth model, followed by the other time series methods and 

deterministic Leslie Matrix methods, with the stochastic Leslie Matrix methods taking the 

longest computationally. The SIPM models take considerably longer to fit than any of the 

other methods. We did not quantify this explicitly in this project, because we did not refit the 

SIPMs, but, broadly speaking, the SIPMs take a few hours to run for a single population, 

whereas the other methods can all be run for a single population within a few seconds. The 

length of computation time required to fit SIPMs to any particular population will vary 

considerably depending upon the complexity and amount of data used in model fitting. Time 

will also depend upon the specification of the computer being used (and, clearly the 

computational time required to fit the models today will be lower than that required when the 

models were originally fit in 2014, due to advances in processing power). 

 

6.2.8. Percentage of situations in which each model had “best” predictions  

 

In the Forth-Tay comparison (R9), the SIPM method was the “best” model, in terms of most 

accurate median prediction for abundance, around 25% of the time (Figure 29). This method 

was followed by the time series simple growth and Ricker modelling methods, which both 

performed best in around 5% of comparisons (Figure 29). The stochastic Leslie Matrix with 

unconstrained productivity (LUF) was the best method in just 2.5% of all comparisons in the 

Forth-Tay, whilst the other Leslie Matrix methods were never the best performing model 
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(Figure 29). The time series Gompertz method also failed to be the best model in any 

comparison (Figure 29). 
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Figure 29. Summary of results for the Forth-Tay comparison for all modelling methods for 
Assessment Criterion 5 to 6. Criterion 5 is the assessment of uncertainty for each modelling 
method (top left panel: percentage of observations that were within the 95% confidence 
interval from the model; top right panel: width of 95% confidence interval from the method). 
Criterion 6 is the time required for computation for each of the modelling methods (bottom 
left panel). Overall performance is also shown by calculating the percentage of times in 
which each modelling method resulted in the best abundance prediction, comparing the 
median prediction to the observed abundance (lower right panel). Each criterion is produced 
by averaging over all species by SPA comparisons that were possible within the Forth-Tay 
region, using a model testing period starting in 2013. Pooling regions were: R0: site level; 
R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global 
(all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of 
Man). Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; 
ATZ: Gompertz model; IPM: Semi-Integrated Population Model; LDF: Leslie Matrix 
determinisitic model parameterised using national rates; LDN: Leslie Matrix deterministic 
model parameterised using Forth-Tay rates; LMF: Leslie Matrix stochastic model with 
constrained productivity parameterised with Forth-Tay rates; LMN: Leslie Matrix Stochastic 
model with constrained productivity parameterised with National rates; LUF: Leslie Matrix 
stochastic model with unconstrained productivity parameterised with Forth-Tay rates; LUN: 
Leslie Matrix Stochastic model with unconstrained productivity parameterised with National 
rates. 
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6.2.9. Population-specific results 

 

Detailed results of performance for specific populations are given in Appendix B. 

Overall, the predicted abundance values produced by SIPM were substantially closer 

to observed counts of abundance for two populations – Herring Gull at Forth Islands, 

and kittiwakes at Buchan Ness and Collieston Coast – although in the latter case 

Leslie matrix approaches performed similarly to the SIPMs when high levels of 

regional spatial pooling were used. The poor performance of the Leslie matrix 

models for these populations probably arises from limited availability of relevant 

demographic data. SIPMs performed worse than Leslie matrix methods, in terms of 

the accuracy of predictions, for three populations – razorbill and kittiwake at 

Fowlsheugh, and puffin at Forth Islands. These three populations all had small 

amounts of abundance data in the training period – too little to meet the minimum 

data requirements we imposed for the use of time series models – which probably 

explains the poor performance of the SIPMs in these situations. For the remaining 

populations the different methods showed relatively similar performance, in terms of 

the accuracy of the median/mean predictions produced. 

 

For all populations the levels of uncertainty produced by different methods showed a 

consistent pattern: uncertainties associated with SIPMs were substantially higher 

than those produced by Leslie matrix models, and uncertainties associated with time 

series models were substantially higher than those produced by SIPMs.  

  



83 
 

7. Discussion 

 

7.1. Summary of key empirical findings  

 

The overall performance of each modelling method, was extremely variable, and 

overall differences in performance between methods were relatively subtle (with one 

important exception: the underestimation of uncertainty by stochastic Leslie matrix 

methods, which was a strong and consistent finding). All methods performed well in 

some situations, in terms of the discrepancy between the predicted and observed 

abundance within the test period, and poorly in others, and it is not clear from the 

results which factors are driving these differences in performance. All methods have 

some situations in which they perform extremely poorly. For stochastic methods 

(Leslie Matrix and time-series methods), it was often the case that a handful of 

simulations produced extremely implausible results. Using the median across 

simulations, rather than mean, to estimate abundance helps to eliminate some of 

these extremely implausible results. 

 

Despite the considerable variations been populations, and the various caveats 

associated with our assessments (Section 7.2), our comparisons did reveal a 

number of consistent findings, and we focus upon these here. We focus primarily 

upon the findings of the national evaluation, as the small number of species, 

populations and test years considered within the Forth-Tay evaluation mean that the 

results of this comparison should be interpreted with substantial caution. 

 

The two most consistent, and unexpected, findings, of our comparisons (both 

nationally and in the Forth-Tay region) were that: 

 

1. Deterministic and stochastic Leslie matrix models often produced less 

accurate predictions than time series models, even the very simple, and 

biologically implausible, simple growth model. 

 

2. Stochastic Leslie matrix models seemed to systematically underestimate 

uncertainty, which led to low percentages for the observed abundance falling 

within the predicted 95% confidence interval. By contrast, the time series 

models (simple growth, Ricker and Gompertz), and, where applicable, SIPMs, 

provided an assessment of uncertainty that avoided the underestimation seen 

with the stochastic Leslie matrix models. Therefore, for these methods, the 

confidence or credible intervals did tend to include the observed count in 

approximately 95% or more or the time.  
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In addition, there were a number of other consistent findings, which reinforced 

existing knowledge: 

 

a.  In terms of overall ability to apply different modelling methods, the Leslie 

matrix methods that used pooled demographic rates could be applied to the 

highest proportion of populations. Leslie matrix methods that used local 

empirical rates, or time series models, could only be applied for the minority of 

colony by species combinations where there was extensive local data for 

either demographic rates or abundance counts. 

b.  The percentage of highly implausible results (i.e. the percentage of results for 

which predicted abundance was more than or less than 100 times the 

observed abundance), the level of bias and the level of error all tended to 

systematically increase as the length of the gap between the last year used 

for model fitting or for model initialisation and the year in which the 

comparison between observed and predicted abundance was made 

increased. 

 

More specifically, in the context of Leslie matrix models: 

 

a. Pooling of information for productivity rates seemed to have relatively little 

overall impact on model performance, although methods that avoided regional 

pooling (R0) generally had slightly higher performance than methods that 

used it, in situations where local data on breeding success existed for the 

colony of interest.  

b. Methods that used a large number of fairly small regions for regional pooling 

could be used in fewer situations than methods that used a small number of 

fairly large regions, but had higher performance in situations where they could 

be used. 

 

In terms of time required for computation, it was possible to run all of the modelling 

methods that we considered here, except the SIPMs, relatively quickly – within a few 

seconds for a single population. Note that this relied on efficient programming of the 

algorithms, and a simpler implementation of the stochastic Leslie matrix models in R 

using loops would have been much slower. The SIPMs are much slower to set up 

and run than any of the other modelling methods, in terms of both computer time and 

staff time. 
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7.2. Caveats, limitations and further work 

 

Within this study, we compared a large number of population modelling methods 

(91), commonly used in PVAs, for a relatively large number of species (15), across 

four different test-training period splits, across a wide range of colonies and years. It 

has necessarily only been possible within this report to focus upon key overall 

summaries of the results, and it has not been feasible to investigate in detail all of 

the specific situations (species, geographical areas and years) in which particular 

methods performed well or badly. The raw outputs of the comparisons for individual 

species-colony-year-method combination are made available as part of the 

Electronic Supplementary Information, in order to allow stakeholders to investigate 

the performance of the methods in specific situations in more detail if this is of 

interest.  

 

In summarising the results, we averaged across colonies, years and, where relevant, 

species. The set of species-colony-year combinations for which evaluations of 

method performance were possible was a fairly small, and not necessarily 

representative, proportion of the set of all species-colony-year combinations. 

Therefore, the results may be influenced by patterns of data availability, and the 

comparisons between methods will partly be confounded by differences between the 

species, colonies and years in data availability. It would be worthwhile to explore this 

issue in more detail, and to attempt to adjust for this where possible (e.g., through 

the use of weighting when combining results, to try and improve the generalisability 

of the results). However, fundamentally, this limitation arises from the availability of 

data on abundance, productivity and, particularly, survival, and so will always be an 

important caveat associated with evaluations of this kind. 

 

A key comparison in this study has been between SIPMs, which effectively form the 

current “gold standard” for running PVAs, and other, simpler but potentially less 

defensible, methods. Our ability to make this comparison has been limited, however, 

by the fact that SIPMs have to date only been run for a very limited set of species-

by-colony combinations within Scotland, and the fact that the timescale and 

resourcing of this project did not allow additional SIPM runs at other colonies to be 

produced. The results of this particular comparison should, therefore, be treated with 

caution, as it is based on a relatively small, and not necessarily representative, set of 

species and colonies, and because this comparison could only be performed over a 

relatively short test period (2013-2017). 

 

We have focused here upon PVA methods that are widely used in practice. With the 

exception of SIPMs, we have focused upon relatively simple methods that can be 
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run in an automated way, with little or no manual intervention required to set up and 

run the population model. A wide range of other statistical methods could potentially 

be used for generating PVAs, and it would be interesting to consider comparisons 

against these in future work. It would be possible, in particular, to consider statistical 

methods – e.g., extensions of the Ricker or Gompertz models – that allow for 

regional pooling within the model. It would also be interesting to investigate the 

performance of PVA methods that account for metapopulations, where this is 

feasible.  

 

The focus of this project has been upon using population models to generate 

predictions of actual counts. PVAs are often used, in practice, to compare the 

predicted values that are obtained when an intervention is introduced (e.g., an 

offshore renewable energy development) against the predicted values that are 

obtained in the absence of the intervention (a “baseline”), in order to quantify the 

impact of the intervention upon seabird demographics. The levels of error associated 

with using PVAs to predict actual abundance will, in general, not be the same as the 

levels of error associated with using PVAs to compare relative levels of abundance 

under two scenarios in this way. We would expect, in general, that the levels of error 

associated with making relative comparisons will be lower than the levels of error 

associated with predicting absolute abundance, so long as the relative comparisons 

are performed in a sensible way (e.g., with appropriate matching of stochastic 

simulations). However, we hypothesise that the levels of error associated with 

predicting absolute error are likely to be, nonetheless, strongly associated (e.g., 

correlated) with the levels of error associated with making relative comparisons, but 

it is beyond the scope of this project to examine whether this is indeed the case. 

 

7.3. Implications of the results 

 

Our evaluation has shown that deterministic and stochastic Leslie matrix models can 

often have poor performance in predicting observed abundance levels, and in a 

substantial number of cases perform poorly even relative to a time series model (the 

simple growth model) that has an extremely simple and biologically unrealistic 

structure. Our interpretation of this result is that the poor performance of the Leslie 

matrix models relative to time series models largely relates to the fact that there is 

relatively little direct data available on adult and immature survival rates, with the 

result that the rates being used in running the Leslie matrix models are likely to 

provide inaccurate estimates of the demographic rates for the population of interest. 

Our proposed solutions either involve collecting more data relating to these rates, or 

using models that leverage both demographic and abundance data, which is much 

more widely available, to try and quantify and adjust for these inaccuracies. We also 
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recommend the use of sensitivity analyses, to evaluate how important these issues 

are for PVA metrics.  

 

The results of our comparisons also consistently suggest that the types of stochastic 

Leslie matrix models that are typically used in practice for running PVAs of seabird 

species tend to systematically underestimate uncertainty. Our evaluation 

demonstrated that the proportion of situations in which the 95% confidence intervals 

of projected abundance contained observed abundance was substantially lower than 

the target level of 95%. This occurred even though the inter-annual standard 

deviations in demographic rates used in the models were, in many cases, quite 

large, suggesting that the issue is not solely with the input values themselves, but 

that the structure of the models must also be leading to under-estimation of 

uncertainty. Statistical arguments suggest that a key underlying cause of this under-

estimation is likely to be the assumption within current stochastic Leslie matrix 

models that stochasticity is (a) independent between demographic rates and (b) 

independent between years. Both assumptions are likely to be biologically 

implausible, and any failure of the independence assumption would be likely to lead 

to a systematic underestimation of uncertainty. More specifically, we note that: 

 

a. the models implemented here assumed that inter-annual variations in 

stochastic demographic rates (survival and productivity) are independent of 

each other - if there is positive correlation between rates and/or years (as 

seems likely in practice) then the independence assumption is likely to lead to 

uncertainty being underestimated, potentially substantially; 

b. these models accounted for variability in annual rates but not for uncertainty in 

the means and SDs of these rates. 

 

As a consequence, the confidence intervals associated with these models should be 

interpreted extremely carefully. 

 

IPMs and SIPMs provide a potential solution to this issue because these methods 

effectively adjust for this effect by directly quantifying the resulting variability in 

abundance. We anticipate that an extension of stochastic Leslie matrix models to 

incorporate empirical estimates of correlations between rates and years may also 

resolve the under-estimation. However, the key challenge in achieving this is not the 

technical ability to include correlations between rates and years into the Leslie matrix 

projections (which is relatively straightforward, and has already been done, for 
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example, in the Seabird_PVA_Tool2, but rather the lack of empirical data on the 

magnitude and directions of correlations.  

 

We have only focused here on the under-estimation of uncertainty in predicting 

abundance, but we strongly suspect that this will also carry over into systematic bias 

in the values of uncertainty-related PVA metrics, such as the probability of quasi-

extinction, and to underestimation of the uncertainty associated with ratio-based PVA 

metrics.   

 

The results of our evaluations also suggest that simple time series models tend to 

produce extremely high estimates of uncertainty, particularly in the case of the 

Gompertz model. This is because, in their standard usage, these models are purely 

empirical, imposing no biological constraints upon the rates of growth or decline that 

are possible. These models allow behaviour that is biologically implausible, for 

certain parameter values (i.e., allowing the populations to increase to extremely high 

levels), and the abundance data are often insufficient to rule out such parameter 

values. This tendency could be constrained by specification of prior information on 

key model parameters, if available for the species in question. However, it is likely 

that these methods will only perform well when there are relatively long time series of 

abundance data available for model fitting. In addition, these methods can only be 

used for PVAs in situations where impacts can reasonably be assumed to operate 

solely upon a single demographic rate (e.g. adult survival), because they do not 

allow a partitioning of impacts into different demographic processes. 

 

7.4. Specific recommendations 

 

7.4.1  Recommendations arising from empirical findings in the project 

 

On the basis of the key empirical findings of the comparisons within this project we 

make a number of specific recommendations regarding the use of Leslie matrix 

models for running PVAs of seabirds, given that these are by far the most widely 

used approach for this purpose in practice: 

 

Recommendation 1. Empirical validation of Leslie Matrix Models. 

 

In situations where deterministic or stochastic Leslie matrix models are being used to 

produce PVAs, and relevant abundance data exist for multiple years, we recommend 

that the performance of the Leslie Matrix models should be validated empirically. 

                                                      
2 https://github.com/naturalengland/Seabird_PVA_Tool 

https://github.com/naturalengland/Seabird_PVA_Tool
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This can be achieved by using the Leslie matrix model to produce projections of 

baseline abundance for the period for which abundance data are available, and then 

comparing the projected and observed abundance values against each other. Where 

substantive differences arise, we recommend using methods that adjust the rates 

within the Leslie matrix model to better match the abundance data (e.g. using a 

SIPM, or “tuning”). 

 

Recommendation 2. Caution in interpreting uncertainty ranges from Stochastic 

Leslie Matrix Models. 

 

We recommend that the uncertainty ranges derived from stochastic Leslie matrix 

models, and any metrics that involve these uncertainty ranges (such as quasi-

extinction probabilities) should be interpreted with great caution, given that the 

results of this evaluation suggest that these ranges may often provide substantial 

underestimates of actual uncertainty. 

 

Recommendation 3. Sensitivity testing of PVA outputs. 

 

We recommend that the sensitivity of the PVA outputs of interest to the values of 

input parameters within the Leslie matrix models should be assessed wherever 

possible, and that, where relevant, the sensitivity of the outputs to the choice of 

model structure (e.g. inclusion or exclusion of density dependence) should also be 

assessed. 

 

7.4.2 Recommendations on future research areas 

 

We also make a number of specific recommendations regarding future research in 

this area: 

 

Recommendation 4. Need for quantification of relative performance of model 

abundance predictions and its effect on a range of PVA metrics. 

 

We recommend that a simulation-based study be undertaken to quantify the likely 

relationship between the performance of models in predicting absolute abundance 

and their performance in predicting a range of PVA metrics. Note that such a study 

would need to go beyond a standard sensitivity analysis, because it would need to 

account for the potential for structural uncertainties in the models being used to 

generate the PVAs, and not only for uncertainties in the values of the inputs to the 

PVA models. 
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Recommendation 5. Additional data collection on demography. 

 

We recommend additional data collection in order to improve the defensibility of 

demographic rates. 

 

Recommendation 6. Extension of Leslie Matrix methods to include correlation 

in demographic rates. 

 

We recommend that stochastic Leslie matrix methods should be extended to include 

correlations between demographic rates – both between different rates, and between 

the values of rates in different years – because we believe that this is a key reason 

that these methods consistently underestimated uncertainty within our comparisons. 

The extension of the model structure to achieve this is relatively straightforward – the 

key issue lies in the need to quantify levels of correlation empirically, as there is 

currently little or no empirical evidence relating to this. Data collection to address this 

issue would involve annual population level estimates of adult survival, immature 

survival and breeding success, from the same population, and ideally from the same 

sample of individuals. 

  

8. PVA guidelines 

 

We conclude by briefly outlining a set of guidelines for best practice when running 

PVAs. These guidelines are partially based upon the results of the current 

evaluation, but are also based upon existing knowledge and expert judgement. As 

such, not all of the guidelines presented here are based directly on the results of the 

evaluation undertaken within this project. 

 

8.1. Recommendation 1.  

 

We recommend the use of Leslie matrices as providing the best general framework 

for running PVAs - they provide a flexible and biologically meaningful approach for 

accounting for the impacts of anthropogenic pressures upon demographic rates, and 

allow impacts on productivity, as well as survival, to be considered. 

 

Our remaining recommendations concern the methods that are used for calculating 

the inputs to the Leslie matrix approach, and for quantifying and propagating the 

uncertainties associated with these inputs. The demographic inputs can either be 

calculated solely using demographic data ("deterministic Leslie matrix approach", 

"stochastic Leslie matrix approach"), or using a combination of abundance data and 

demographic data ("IPMs", "SIPMs", "non-Bayesian tuning methods"). 
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8.2. Recommendation 2. 

 

In situations where a reasonable amount of abundance data are available, we 

recommend the use of methods that adjust the demographic rates within a Leslie 

matrix to fit the available abundance data, and also provide a proper quantification of 

uncertainty. Specifically: 

 

a. In general, we recommend the use of IPMs, as these methods make the most 

effective use of all available data, on both demography and abundance, and 

provide a defensible quantification of uncertainty. 

 

b. In situations where there is very poor evidence for one demographic rate (e.g. 

juvenile survival) and a reasonable amount of empirical data on abundance 

and on the remaining demographic rates then we recommend that SIPMs can 

be used as a defensible (and simpler) alternative to IPMs. 

 

c. Non-Bayesian approaches to tuning also allow the rates in the Leslie matrix 

models to be adjusted to fit the abundance data. However, these approaches 

do not currently allow the uncertainty associated with tuning to be defensibly 

quantified and accounted for, so we do not currently recommend the use of 

these methods (because of the importance of properly quantifying 

uncertainty). If these methods can be refined so that they can defensibly 

quantify uncertainty (e.g. through the development of an appropriate bootstrap 

procedure), then it may become appropriate to use these approach as an 

alternative to SIPMs. 

 

8.3. Recommendation 3. 

 

In situations where there is minimal abundance data, there is little choice but to just 

use standard (untuned) Leslie matrix approaches. In this context we think it is also 

important to quantify uncertainty, and hence to use stochastic rather than 

deterministic Leslie matrix approaches, but the results of the evaluations within this 

project suggest that current stochastic Leslie matrix approaches tend to 

systematically underestimate uncertainty. Until this issue is resolved, these 

estimates of uncertainty should be interpreted with considerable caution. Research 

to empirically quantify correlations between demographic rates, and to incorporate 

these into the stochastic Leslie matrix calculations, is likely to help to make this 

approach more defensible. 
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Appendix B 

 

 Detailed results of Forth-Tay evaluation 

 

In this appendix we present detailed results for the Forth-Tay. The comparison 

between population modelling approaches within this dataset should be interpreted 

with considerable caution, hence we present them in this appendix, rather than the 

main text. This is because the number of test years available for the Forth-Tay 

comparison is typically very low, and may not provide a representative sample of 

years across populations within the Forth-Tay area. In addition, the results of the 

comparisons for different years and SPAs are unlikely to be independent, with the 

result that the effective number of independent comparisons is likely to be lower than 

the number of apparent comparisons (e.g. the comparisons are likely to contain less 

information than would be applied by the sample size). 

 

Atlantic puffins 

 

Methods could be compared at only one SPA in the Forth-Tay for this species, so all 

modelling methods were compared to observed counts from the Forth Islands SPA 

in 2013, with a test period starting in 2013. In terms of mean and median estimates 

for the predicted abundance, all models performed well, with the exception of the 

SIPM model, where the unstable trend in puffin counts caused the model to over-

predict the observed abundance, although the 95% credible interval did encompass 

the true value (Figure 30; see Freeman et al. 2014 for full details of challenges 

modelling Forth/Tay puffins using SIPMs). All other modelling methods slightly 

underestimated the observed count, but where they could be generated, confidence 

intervals did encompass the true value (Figure 30 ) Regional pooling methods for 

demographic data resulted in little change to the predicted value, or confidence limits 

(Figure 30 ).  
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Figure 30: Atlantic Puffin results: performance of population modelling methods for the 
Forth-Tay SPAs for specific combinations of SPA, year and test period start (TPS). Each 
graph shows the median (open circle), mean (closed circle) and 95% confidence interval 
(vertical line) associated with each modelling method. Statistical methods are shown in 
blocks (separated by dotted grey lines), and the regional pooling methods within these, 
colour coded as: R0 (purple), R1 (dark blue), R2 (blue), R3 (light blue), R4 (green), R5 (light 
green), R6 (yellow), R7 (orange), R8 (red) and R9 (black). If some methods are omitted from 
a plot it is because they could not be applied for this combination. Pooling regions were: R0: 
site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & 
Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; 
R8: Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and 
Isle of Man). Modelling methods were: ATG: simple time series growth model; ATR: Ricker 
model; ATZ: Gompertz model; IPM: Semi-Integrated Population Model; LDF: Leslie Matrix 
deterministic model parameterised using national rates; LDN: Leslie Matrix deterministic 
model parameterised using Forth-Tay rates; LMF: Leslie Matrix stochastic model with 
constrained productivity parameterised with Forth-Tay rates; LMN: Leslie Matrix Stochastic 
model with constrained productivity parameterised with National rates; LUF: Leslie Matrix 
stochastic model with unconstrained productivity parameterised with Forth-Tay rates; LUN: 
Leslie Matrix Stochastic model with unconstrained productivity parameterised with National 
rates. 

 

Black-legged kittiwakes 

 

Across the four SPAs for this species there were annual 12 counts in the test period 

that could be compared against modelled values. In general, the SIPM performed 

very well, with the predicted mean or median being very close to the observed 

abundance in almost all instances, and the 95% credible interval capturing the 
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observed abundance in all cases except one (Figure 31). Two of the time series 

methods – the simple growth and Ricker models – also performed well, when they 

could be applied, with predicted means and medians falling close to the observed 

value, and the 95% confidence intervals capturing the observed value in most 

instances (Figure 31). However, the time series Gompertz model performed more 

poorly, often overestimating the observed abundance by a considerable amount, and 

producing 95% confidence intervals that were very wide, and therefore of little use 

(Figure 31). The various Leslie matrix methods all performed similarly, with predicted 

abundances that were reasonably close to the observed abundance in many cases, 

but with a notable underestimation of uncertainty, whereby on many occasions the 

95% confidence intervals were very narrow, and often did not include the observed 

value (Figure 31). In several instances, the Leslie Matrix methods tended to result in 

an increasing underestimation of the observed value as the level of regional pooling 

increased from regions R1-R9 (Figure 31).   
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Figure 31: Black-legged kittiwake results: performance of population modelling methods for the Forth-
Tay SPAs for specific combinations of SPA, year and test period start (TPS). Each graph shows the 
median (open circle), mean (closed circle) and 95% confidence interval (vertical line) associated with 
each modelling method. Statistical methods are shown in blocks (separated by dotted grey lines), and 
the regional pooling methods within these, colour coded as: R0 (purple), R1 (dark blue), R2 (blue), R3 
(light blue), R4 (green), R5 (light green), R6 (yellow), R7 (orange), R8 (red) and R9 (black). If some 
methods are omitted from a plot it is because they could not be applied for this combination. Pooling 
regions were: R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook 
& Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: 
Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; ATZ: Gompertz 
model; IPM: Semi-Integrated Population Model; LDF: Leslie Matrix determinisitic model 
parameterised using national rates; LDN: Leslie Matrix deterministic model parameterised using 
Forth-Tay rates; LMF: Leslie Matrix stochastic model with constrained productivity parameterised with 
Forth-Tay rates; LMN: Leslie Matrix Stochastic model with constrained productivity parameterised with 
National rates; LUF: Leslie Matrix stochastic model with unconstrained productivity parameterised 
with Forth-Tay rates; LUN: Leslie Matrix Stochastic model with unconstrained productivity 
parameterised with National rates. 
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Common guillemot 

 

Overall, modelling methods could be compared at nine SPA by year by training 

period combinations for this species, and results were very similar to those described 

above for black-legged kittiwakes. In general, the SIPM performed very well, with the 

predicted mean or median being very close to the observed abundance in almost all 

instances, and the 95% credible interval capturing the observed abundance in all 

cases except one (Figure 32). Two of the time series methods – the simple growth 

and Ricker models – also performed well, when they could be applied, with predicted 

means and medians falling close to the observed value, and the 95% confidence 

intervals capturing the observed value in most instances (Figure 32). However, the 

time series Gompertz model performed more poorly, often overestimating the 

observed abundance by a considerable amount, and producing 95% confidence 

intervals that were very wide, and therefore of little use (Figure 32). The various 

Leslie matrix methods all performed similarly, with predicted abundances that were 

reasonably close to the observed abundance in many cases, but with a notable 

underestimation of uncertainty, whereby on many occasions the 95% confidence 

intervals were very narrow, and in approximately half the test cases, did not include 

the observed value (Figure 32).In contrast to the results for black-legged kittiwakes, 

there was no consistent trend in bias for predicted values as the level of regional 

pooling increased from regions R1-R9 (Figure 32).  
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Figure 32: Common guillemot results: performance of population modelling methods for the Forth-
Tay SPAs for specific combinations of SPA, year and test period start (TPS). Each graph shows the 
median (open circle), mean (closed circle) and 95% confidence interval (vertical line) associated with 
each modelling method. Statistical methods are shown in blocks (separated by dotted grey lines), and 
the regional pooling methods within these, colour coded as: R0 (purple), R1 (dark blue), R2 (blue), R3 
(light blue), R4 (green), R5 (light green), R6 (yellow), R7 (orange), R8 (red) and R9 (black). If some 
methods are omitted from a plot it is because they could not be applied for this combination. Pooling 
regions were: R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook 
& Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: 
Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; ATZ: Gompertz 
model; IPM: Semi-Integrated Population Model; LDF: Leslie Matrix deterministic model parameterised 
using national rates; LDN: Leslie Matrix deterministic model parameterised using Forth-Tay rates; 
LMF: Leslie Matrix stochastic model with constrained productivity parameterised with Forth-Tay rates; 
LMN: Leslie Matrix Stochastic model with constrained productivity parameterised with National rates; 
LUF: Leslie Matrix stochastic model with unconstrained productivity parameterised with Forth-Tay 
rates; LUN: Leslie Matrix Stochastic model with unconstrained productivity parameterised with 
National rates. 
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Herring gull 

 

Comparisons for herring gulls could only be made for a single SPA, for five years. 

The SIPM performed particularly well for this species, in each of the five years, with 

the predicted mean or median being very close to the observed abundance in all 

instances, and the 95% credible interval capturing the observed abundance in all 

cases (Figure 33). Two of the time series methods – the simple growth and Ricker 

models – also performed reasonably well, when they could be applied, with predicted 

means and medians falling reasonably close to the observed abundance, although 

with a tendency for overestimation, and 95% confidence intervals capturing the 

observed abundance, but tending to generate large confidence intervals (Figure 33). 

As with the previous species, the Gompertz time series methods performed more 

poorly, often overestimating the observed abundance by a considerable amount, and 

producing 95% confidence intervals that were very wide, and therefore of little use 

(Figure 33). For this species, the Leslie matrix methods also performed poorly, 

overestimating the observed abundance in all five years, with very narrow 95% 

confidence intervals that did not include the observed abundance in almost all 

instances (Figure 33). The LMN and the LUM performed better than the other Leslie 

matrix methods in terms of generating marginally wider 95% confidence intervals 

that occasionally included the observed abundance (Figure 33). There was some 

tendency for the overestimation of the Leslie matrix methods to decrease as the 

pooling region increased from R2-R9 (Figure 33).  
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Figure 33: Herring gull results: performance of population modelling methods for the Forth-Tay SPAs 
for specific combinations of SPA, year and test period start (TPS). Each graph shows the median 
(open circle), mean (closed circle) and 95% confidence interval (vertical line) associated with each 
modelling method. Statistical methods are shown in blocks (separated by dotted grey lines), and the 
regional pooling methods within these, colour coded as: R0 (purple), R1 (dark blue), R2 (blue), R3 
(light blue), R4 (green), R5 (light green), R6 (yellow), R7 (orange), R8 (red) and R9 (black). If some 
methods are omitted from a plot it is because they could not be applied for this combination. Pooling 
regions were: R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook 
& Robinson Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: 
Global (all colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). 
Modelling methods were: ATG: simple time series growth model; ATR: Ricker model; ATZ: Gompertz 
model; IPM: Semi-Integrated Population Model; LDF: Leslie Matrix deterministic model parameterised 
using national rates; LDN: Leslie Matrix deterministic model parameterised using Forth-Tay rates; 
LMF: Leslie Matrix stochastic model with constrained productivity parameterised with Forth-Tay rates; 
LMN: Leslie Matrix Stochastic model with constrained productivity parameterised with National rates; 
LUF: Leslie Matrix stochastic model with unconstrained productivity parameterised with Forth-Tay 
rates; LUN: Leslie Matrix Stochastic model with unconstrained productivity parameterised with 
National rates. 
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Razorbill 

 

Comparisons for razorbills could be made in eight SPA by year by training period 

combinations. The SIPM again performed particularly well for this species, in all eight 

test cases, with the predicted mean or median being very close to the observed 

abundance in all instances, and the 95% credible interval capturing the observed 

abundance in all cases (Figure 34). Two of the time series methods – the simple 

growth and Ricker models – also performed reasonably well, when they could be 

applied, with predicted means and medians falling reasonably close to the observed 

abundance, and 95% confidence intervals capturing the observed abundance, but 

tending to generate large confidence intervals (Figure 34). As with the other species, 

the time series Gompertz method performed more poorly, occasionally 

overestimating the observed abundance by a considerable amount, and producing 

95% confidence intervals that were very wide, and therefore of little use (Figure 34). 

The various Leslie matrix methods all performed similarly, with predicted 

abundances that were reasonably close to the observed abundance in many cases, 

but with a notable underestimation of uncertainty, such that on many occasions the 

95% confidence intervals were very narrow, and in three of the eight test cases, did 

not include the observed value (Figure 34). 
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Figure 34: Razorbill results: performance of population modelling methods for the Forth-Tay SPAs for 
specific combinations of SPA, year and test period start (TPS). Each graph shows the median (open 
circle), mean (closed circle) and 95% confidence interval (vertical line) associated with each modelling 
method. Statistical methods are shown in blocks (separated by dotted grey lines), and the regional 
pooling methods within these, colour coded as: R0 (purple), R1 (dark blue), R2 (blue), R3 (light blue), 
R4 (green), R5 (light green), R6 (yellow), R7 (orange), R8 (red) and R9 (black). If some methods are 
omitted from a plot it is because they could not be applied for this combination. Pooling regions were: 
R0: site level; R1: SMP regions; R2: ICES regions; R3: JNCC regional seas; R4: Cook & Robinson 
Abundance; R5: Cook & Robinson Breeding Success; R6: MSFD; R7: OSPAR; R8: Global (all 
colonies in England, Northern Ireland, Scotland, Wales, Channel Islands and Isle of Man). Modelling 
methods were: ATG: simple time series growth model; ATR: Ricker model; ATZ: Gompertz model; 
IPM: Semi-Integrated Population Model; LDF: Leslie Matrix deterministic model parameterised using 
national rates; LDN: Leslie Matrix deterministic model parameterised using Forth-Tay rates; LMF: 
Leslie Matrix stochastic model with constrained productivity parameterised with Forth-Tay rates; LMN: 
Leslie Matrix Stochastic model with constrained productivity parameterised with National rates; LUF: 
Leslie Matrix stochastic model with unconstrained productivity parameterised with Forth-Tay rates; 
LUN: Leslie Matrix Stochastic model with unconstrained productivity parameterised with National 
rates. 
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Tables 

 

 

 
Table 0-1: Adult and immature survival data for each of the 15 species of seabirds used in 
assessments of PVA methods. Age (min) and Age (max) define the age range over which 
survival has been estimated. Standard deviation in survival rates denoted by ‘SD’. For 
three species, no data were available on the standard deviation of survival rates: little tern, 
great black-backed gull and arctic skua (missing immature survival rate standard deviation 
only). For these three species we used standard deviations from the nearest closely 
related species: common tern, herring gull, and for immature great skuas we used the 

standard deviation for adult great skuas. 

 

Species Life stage Age (min) Age (max) Mean survival SD 

Arctic Skua Immature 0 4 0.346 0.038 

Arctic Skua Adult 
  

0.91 0.038 

Atlantic Puffin Immature 0 3 0.709 0.022 

Atlantic Puffin Immature 3 4 0.76 0.019 

Atlantic Puffin Immature 4 5 0.805 0.017 

Atlantic Puffin Adult 
  

0.906 0.083 

Common Guillemot Immature 0 1 0.56 0.013 

Common Guillemot Immature 1 2 0.792 0.034 

Common Guillemot Immature 2 3 0.917 0.022 

Common Guillemot Adult 
  

0.939 0.015 

Common Tern Immature 0 3 0.441 0.004 

Common Tern Immature 3 5 0.85 0.014 

Common Tern Adult 
  

0.883 0.014 

Fulmar Immature 0 8 0.26 0.15 

Fulmar Adult 
  

0.936 0.055 

Great Black-Backed Gull All birds combined 
 

0.93 0.034 

Great Cormorant Immature 0 1 0.54 0.09 

Great Cormorant Adult 
  

0.868 0.055 

Herring Gull Immature 0 1 0.798 0.092 

Herring Gull Adult 
  

0.834 0.034 

Kittiwake Immature 0 1 0.79 0.051 

Kittiwake Adult 
  

0.854 0.051 

Lesser Black-Backed Gull Immature 0 1 0.82 0.022 

Lesser Black-Backed Gull Adult 
  

0.885 0.022 

Little Tern All birds combined 
  

0.8 0.014 

Northern Gannet Immature 0 1 0.424 0.007 

Northern Gannet Immature 1 2 0.829 0.004 

Northern Gannet Immature 2 3 0.891 0.003 

Northern Gannet Immature 3 4 0.895 0.003 

Northern Gannet Adult 
  

0.919 0.042 

Razorbill Immature 0 2 0.63 0.209 

Razorbill Adult 
  

0.895 0.067 

Sandwich Tern Immature 0 2 0.358 0.219 

Sandwich Tern Immature 2 5 0.741 0.206 

Sandwich Tern Adult 
  

0.898 0.029 

Shag Immature 0 1 0.513 0.256 

Shag Immature 1 2 0.737 0.181 

Shag Adult 
  

0.858 0.194 
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Table 0-2: Summary of the amount of data – the number of colony-by-year combinations - 
available for abundance and breeding success for each species. 

  

Species Abundance Breeding success 

Arctic skua 1561 381 

Atlantic puffin 1262 114 

Common guillemot 2240 309 

Common term 5546 1824 

Fulmar 6382 975 

Great black-backed gull 5895 975 

Great cormorant 3739 217 

Herring gull 8046 1233 

Kittiwake 3683 1423 

Lesser black-backed gull 3770 361 

Little tern 3558 14 

Northern gannet 495 186 

Razorbill 2450 163 

Sandwich tern 1768 376 

Shag 3953 536 
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Table 0-3: Regional classifications used in pooling data. 
 

 

 

Regional classification Number of regions 

R0 Site (i.e. no regional pooling) 6383 

R1 SMP 113 

R2 ICES 11 

R3 Regional Seas 8 

R4 CRA 7 

R5 CRB 4 

R6 MSFD 3 

R7 OSPAR 3 

R8 Global 1 

R9 Forth-Tay SPAs 5 
 

 
 
Table 0-4: Description of the empirical inputs needed for generating PVAs using 
deterministic or stochastic Leslie matrix approaches. 
 

 

  

 Input Description Value determined by 

I1 Breeding success Mean, and, for stochastic version 
only, SD 

Species & pooling region 

I2 Survival Mean, and, for stochastic version 
only, SD 

Species & age class 

I3 Age at first breeding Value Species 

I4 Initial count Value, year associated with the value Species & target colony 
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Table 0-5: Summary of PVA methods, and minimum data requirements for each method. 

“TP” denotes the training period.  

Method Model 
type 

Specific model Type of data 
required 

Minimum data 
requirements 

Survival 
rates 

ATG Abundance 
time series 
models 

Simple growth 
model 

abundance 10 years+ in TP for which 
abundance data are 
available in both current 
and previous year 

Not 
relevant 

ATR Ricker Abundance 

ATZ Gompertz Abundance 

LDN Leslie 
matrix 
models 

Deterministic Demographic rates 1+ years breeding success 
data in TP, and 1+ years 
abundance data in TP 

National 

LDF  Forth-Tay 

LMN Stochastic – 
constrained 
productivity 

Demographic rates 2+ years breeding success 
data in TP, and 1+ years 
abundance data in TP 

National 

LMF Demographic rates Forth-Tay 

LUN Stochastic – 
unconstrained 
productivity 

Demographic rates National 

LUF Demographic rates Forth-Tay 

IPM Semi-
integrated 
population 
model 

Freeman et al. 
(2014) 

Abundance and 
demographic rates 

See Freeman et al. (2014) Forth-Tay 
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Table 0-6: Criteria used in the evaluating the performance of PVA methods. 
 

 

 

 

 

 

 

 

 

 

 

 

Table 0-7: Number of species-colony combinations for which an observed count exists 
within the test period, for each definition of the test period, and the mean number of years 
with counts in the test period for each species-colony combination. 
 

Criterion Quantified by Good performance indicated 
by 

C1. Ability to use Percentage of situations in which it is 
possible to apply the method 

High values – values close to 
100% are ideal. 

C2. Occurrence of highly 
implausible results. 

Percentage of situations in which  

|𝑟𝑖𝑗| < 2 

High values – values close to 
100% are ideal. 

C3. Lack of 
systematic bias 

Mean value of 𝑟𝑖𝑗  Values close to zero. 

C4. Lack of error Mean value of |𝑟𝑖𝑗| Low values – values close to 
zero are ideal. 

C5. Accurate 
quantification of 
uncertainty 

Percentage of situations in which 
observed count lies within 95% 
prediction intervals 

Values close to the nominal 
level (95%) are ideal. 

C6. Level of uncertainty Width of 95% confidence interval Low values – values close to 
zero are ideal 

C&. Ease of  
Computation 

Computer time (seconds) to run the 
method 

Low values – values close to 
zero are ideal 

Test period Number of species-colony 
combinations for which 
evaluation is possible 

Mean number of years of 
counts within test period 

1998-2017 2186 5.72 

2003-2017 2350 4.49 

2008-2017 2197 3.22 

2013-2017 1869 1.93 
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