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Executive Summary 

 

Accurately estimating the proportion of birds at collision risk height forms a key part 

of assessing potential collision risk at offshore wind farms.  Recent advances in 

LiDAR and digital aerial imaging offer the potential to collect precise estimates of the 

altitude of birds in flight.  We trialled LiDAR and digital aerial photography as an 

approach to measuring the flight heights of seabirds in the Outer Forth and Tay 

Estuaries and carried out an exercise to validate measurements of flight height 

gained from LiDAR.  The validation exercise demonstrated that the height of birds in 

flight could be measured using LiDAR to an accuracy of within 1 m.  This compares 

very favourably to other approaches used for measure seabird flight height.  

 

We successfully collected flight height information on 2,201 birds of which 806 were 

believed to be black-legged kittiwakes and 377 were identified as northern gannets. 

These data were used to derive continuous flight height distributions.  We also 

demonstrate how data can be used to plot spatial patterns in seabird flight heights 

which may be of use for the purposes of marine spatial planning.  Based on our 

experiences, we provide recommendations for the best practice in the use of LiDAR 

to collect seabird flight height data as part of future studies.  

  



 

 

Contents 

Introduction ............................................................................................................................................ 1 

Background ............................................................................................................. 1 

How LiDAR works ................................................................................................... 1 

Types of LiDAR System .......................................................................................... 2 

Ecological Applications of LiDAR ............................................................................ 3 

Project Objectives and Aims ................................................................................... 4 

Methods ................................................................................................................................................. 6 

Survey Area ............................................................................................................ 6 

Survey ..................................................................................................................... 7 

Equipment ............................................................................................................... 8 

Validation Exercise ................................................................................................. 8 

Data Processing ...................................................................................................... 9 

Simulations ........................................................................................................... 10 

Flight Height Modelling ......................................................................................... 11 

Comparison with Previous Studies ....................................................................... 12 

Three-dimensional modelling of black-legged kittiwake and gull flight heights ..... 13 

Results ................................................................................................................................................. 14 

Data Collection ...................................................................................................... 14 

Data validation ...................................................................................................... 19 

Simulations ........................................................................................................... 21 

Visual comparison of simulated data and distributions fitted to these data ...................... 22 

Comparison of predicted and observed proportions of birds from simulated datasets 

within collision risk window ....................................................................................................... 23 

Difference between simulated datasets and fitted distributions .......................................... 25 

Flight Height Modelling ......................................................................................... 26 

Proportions of birds at Collision Risk Height ......................................................... 31 

Comparison with boat-based and digital aerial survey data .................................. 32 

Comparison with the results of Cleasby et al. (2015) for northern gannet ............ 34 

Three dimensional modelling of black-legged kittiwake flight height ..................... 36 

Three dimensional modelling of gull flight height .................................................. 36 

Discussion ........................................................................................................................................... 38 

Future applications ................................................................................................ 41 

Best practice recommendations ............................................................................ 43 



 

 

Acknowledgements ............................................................................................................................ 46 

References .......................................................................................................................................... 47 

APPENDIX 1: Validation exercise ................................................................................................... 52 

 



1 
 

Introduction 

 

Background 

 

Scotland is recognised as having considerable potential for offshore renewable 

energy development and the Scottish Government has the duty to ensure that the 

development of offshore renewable sectors is achieved in a sustainable manner. 

Strategic Environmental Assessments (SEAs) and Environmental Impact 

Assessments (EIAs) for offshore renewable developments have identified a need to 

evaluate potential interactions between offshore renewables and marine wildlife as a 

matter of priority so that appropriate mitigation can be investigated and applied. 

Collision mortality is widely regarded to be one of the main potential impacts of wind 

farms on seabird populations (Furness et al., 2013; Garthe and Huppop, 2004). 

Consequently concerns with respect to the potential collision impacts of offshore 

wind farms have formed a substantial component of the consenting process for 

offshore wind farm projects throughout the UK.  

 

Estimates of collision risk are calculated using collision risk modelling; typically using 

the Band model (Band, 2012).  A key input parameter into the Band model is the 

height at which birds fly.  A range of methods exist for either measuring or estimating 

bird flight heights, but validation of these flight heights appears to be limited or 

lacking (Thaxter et al., 2016), resulting in considerable uncertainty over the 

estimation of collision rates, and this may result in overly precautionary assessment 

methods being applied (Furness et al., 2013).  For one of the Band model options 

(‘Option 3’), the risk of collision, with respect to the sweep of the turbines blades, is 

calculated to reflect the heterogeneous likelihood of being struck, i.e. to account for 

birds’ expected flight height distributions (Johnston et al., 2014) (other options 

assume a homogenous likelihood of collision across the turbine blades).  There is a 

clear and growing need for the validation of the estimates of flight heights, collection 

of robust data and quantification of the uncertainty around the data and subsequent 

estimates (Johnston et al., 2014; Johnston and Cook, 2016; Thaxter et al., 2016). 

Recent developments in the application of Light Detection and Ranging (LiDAR) 

technology offer the potential to collect precise species specific estimates of seabird 

flight heights when combined with the use of digital imagery in order to identify 

individual birds to species level. 

 

How LiDAR Works 

 

LiDAR is a remote sensing technique.  LiDAR systems record the three-dimensional 

location of objects by emitting frequent, short-duration laser pulses.  Each pulse is 
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reflected off an object and the time it takes to return to the LiDAR sensor is recorded. 

The distance between the LiDAR and the object can then be calculated by 

multiplying the time it takes for the pulse to return to the sensor by the speed of light 

and dividing by two, in order to account for the return journey (Lefsky et al., 2002). 

Each emitted laser pulse is aimed towards a different location and, by aggregating 

the large number of resulting pulse signal return records, a detailed three 

dimensional map of surface structure can be created.  When LiDAR equipment are 

mounted in aircraft, these maps may be combined with high resolution GPS data in 

order to create a detailed, geo-referenced point cloud of a surface (Figure 1).  

 

 
 
Figure 1: Example point cloud collected using LiDAR showing an area of sea surface in the 
Outer Forth and Tay Estuaries. The blue colours indicate waves and troughs with darker 
colours reflecting deeper troughs and lighter colours indicating higher waves. Black indicates 
areas for which no signal was detected. Note that the black areas are concentrated towards 
the edges of the image where the beam from the LiDAR will be less focussed. Also note 
highlighted points which are likely to be birds in flight.  

 

Types of LiDAR System  

 

There are two types of LiDAR system, discrete point return systems and continuous 

waveform systems (Lefsky et al., 2002).  Discrete point return systems collect 

estimates of a limited number of heights by identifying major peaks representing 

discrete objects in the return signal of the laser.  Such systems have a high laser 

repetition rate and a footprint with a small diameter.  This enables them to collect a 
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relatively dense distribution of sampled points, making them ideal for detailed 

mapping of the ground surface or of canopy topography (Lefsky et al., 2002). 

Waveform systems record the height distribution of surfaces by recording the time-

varying intensity of the energy returned by each laser pulse.  This enables 

information to be collected over larger areas than is possible through the use of point 

return systems (Lefsky et al., 2002).  

 

The laser wavelength employed in a particular LiDAR instrument largely determines 

its interaction (or lack thereof) with various surface types, and, therefore, dictates 

how the 3-D structure of potential habitat is recorded by the sensor.  For example, 

while near-infrared wavelengths are readily reflected by vegetation and soil (thus 

making them useful for recording canopy and ground signals), these same 

wavelengths are almost wholly absorbed by water and do not provide enough ‘return’ 

energy for point detection by the instrument (Lefsky et al., 2002).  To map 

bathymetric habitat features in marine and freshwater environments, therefore, a 

higher energy blue-green laser, which can transmit through water and enable 

subsurface point detection is required.  Other key factors to consider when selecting 

LiDAR equipment include the power of the laser and the size of the receiver aperture 

as these will determine the maximum altitude from which data can be collected and, 

the width of the swath. 

 

Ecological Applications of LiDAR 

 

LiDAR has been widely used by ecologists for tasks such as fine-scale habitat 

mapping or assessing woodland structure and composition (Chust et al., 2008; Hill 

and Thomson, 2005; Lefsky et al., 2002; Vierling et al., 2008).  However, LiDAR is 

also widely applied in fields such as meteorology for tasks such as measuring wind 

speeds and locating atmospheric boundary layers (Northend et al., 1966).  In these 

contexts, the presence of flying animals, like insects, has long been acknowledged 

as a potential problem for the data collected.  Approaches have been developed to 

filter out such data (Lefsky et al., 2002; Martner and Moran, 2001).  However, the 

potential for such filters to be used to monitor populations of flying species including 

insects (Kirkeby et al., 2016), bats (Azmy et al., 2012) and birds (Jansson et al., 

2017) is becoming widely recognised.  We describe some applications of LiDAR for 

monitoring animals in flight below.  

 

Flying insects are economically important as they may act as pollinators of crops, 

crop pests and vectors of zoonotic disease.  Consequently, there is growing interest 

in monitoring their spatio-temporal distributions.  A recent study compared a LiDAR 

system and a light trap as methods for monitoring insect populations (Kirkeby et al., 
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2016).  This study demonstrated that LiDAR was capable of recording a greater 

number of flying insects than was detected using the light trap and, also that it was 

capable of making morphological measurements of the detected insects. 

Furthermore, LiDAR may also be sensitive enough to record the wing-beat patterns 

of insects, further aiding species identification (Fristrup et al., 2017).  

 

A network of multi-wavelength aerosol LiDAR systems operates across Europe in 

order to create a comprehensive database describing the horizontal, vertical and 

temporal distribution of aerosols in the atmosphere1.  Using data collected from a 

LiDAR system installed in Athens, Greece, it was possible to use the characteristics 

of the LiDAR signals in order to identify 1735 events likely to have been birds and 

the altitudes at which they were recorded (Jansson et al., 2016).  The wider network 

corresponds well to key migration routes across Europe, leading to calls to use data 

collected by the LiDAR system in order to monitor migration patterns (Jansson et al., 

2017).  

 

Information about vertical obstructions, such as power lines, is vital for both military 

and commercial flight safety.  In order to build a dataset containing information on 

vertical obstructions, a recent study developed an algorithm to detect objects above 

100 feet (30 m) in altitude that may pose a risk to aircraft (Kohlbrenner et al., 2009). 

The data were collected from an aircraft mounted LiDAR system at an altitude of 

9,000 feet (2750 m).  LiDAR was combined with camera imagery in order to identify 

any objects detected.  In total, over 4,000 objects were detected and assigned to a 

series of altitude categories.  Of these, 65 objects were assessed as likely to be 

birds in flight either on the basis of the accompanying photograph or, on the basis of 

behaviour as recorded by the LiDAR.  It should be noted that the purpose of this 

study was not to detect birds and, as it filtered out observations below 80 feet, many 

are likely to have been missed.  

 

Project Objectives and Aims 

 

Whilst LiDAR may offer the potential to quantify seabird flight heights with high 

precision, there is a need for a field trial of the technology in order to understand how 

the technology performs in a range of different conditions.  For example, as is the 

case with RADAR measurements of bird movement patterns, there is the potential 

for sea clutter to interfere with the detection of birds close to the sea surface.  There 

is a need to understand how this may influence estimates of seabird flight height 

distributions and quantify any resulting uncertainty.  The resulting flight height 

                                                 
1 https://www.earlinet.org/index.php?id=earlinet_homepage  

https://www.earlinet.org/index.php?id=earlinet_homepage
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distributions could be compared to existing distributions derived from tagging data 

(Cleasby et al., 2015), digital aerial survey data (Johnston and Cook, 2016) and 

boat-based survey data (Johnston et al., 2014) in order to understand how estimates 

may vary between platforms and what consequences there may be for the 

consenting process.  The wider objectives for this project are: 

 

 Test and validate a novel approach for collecting flight height data and provide 

best practice recommendations for future survey work; 

 Collect new bird flight height data for five key breeding seabird features of UK 

SPAs (Northern Gannet, Black-legged Kittiwake, Herring Gull, Lesser Black-

backed Gull and Great Black-backed Gull) using a novel application of LiDAR 

and digital imagery technology, growing the evidence base; 

 To use the data collected to model flight height distributions for these five key 

species; 

 To validate flight height estimates collected using LiDAR and digital imagery; 

 Compare data with those collected using existing methodologies in order to 

investigate how different platforms may influence estimates of seabird flight 

height, and the uncertainty surrounding estimates of seabird flight height; 

 Consider how this approach could be used to decrease uncertainty in collision 

risk assessments for birds and to reduce uncertainties in the consenting of 

offshore wind projects at site-specific and cumulative scales. 
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Methods 

 

Survey Area 

 

The purpose of this work was to test the applicability of LiDAR as a tool for collecting 

flight height data and deriving robust flight height distributions suitable for use with 

’Option 3’ of the Band Collision Risk Model (Band, 2012).  Previous experience with 

data from digital aerial surveys suggested that a minimum sample size of 100 birds 

is required in order to produce a robust modelled distribution (Johnston and Cook, 

2016).  Consequently, we reviewed existing datasets including HiDef (2016) and 

Stone et al. (1995) in order to identify areas where aerial surveys were likely to 

obtain a sufficient sample size for five key species: Northern Gannet Morus 

bassanus, Black-legged Kittiwake Rissa tridactyla, Lesser Black-backed Gull Larus 

fuscus, Herring Gull Larus argentatus and Great Black-backed Gull Larus marinus. 

Based on this review, we identified an area in the Outer Firth of Tay Estuary where 

we felt a sufficient sample size could be collected for the five key species.  Based on 

estimates of the likely speed of the plane and the distribution of the birds within the 

study area, we designed a survey with eight transects, each 30 km long and 

separated by 2.5 km (Figure 2).  In order to maximise data collection, we aimed to fly 

the transects on multiple occasions during the survey period, initially planned for late 

July 2017 in order to coincide with the breeding season of the key species at their 

colonies in nearby Special Protection Areas (SPAs).  Unfortunately, technical issues 

lead to the delay of the data collection until the 20-22 September 2017, after the end 

of the breeding season for most of the key species.  There was a need to maintain a 

constant ground speed in order to optimise the quality of the imagery.  

Consequently, pilots had the discretion to fly transects perpendicular to those shown 

in Figure 2 depending on the prevailing wind conditions for the purposes of the trial 

survey.  
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Figure 2: Area selected for the LiDAR survey.  Transects are each 30 km long and 
separated by 2.5 km.  In order to optimise data collection, weather conditions meant that 
transects perpendicular to those shown were flown on the second survey day.  

 

Survey 

 

The survey was carried out using a Cessna F406 aircraft operated by the Airtask 

Group on behalf of Marine Scotland at an altitude of approximately 300 m.  Existing 

guidance (Thaxter and Burton, 2009) recommends a minimum survey altitude of 450 

m above sea level, this level was set following observations of a limited number of 

Common Scoter Melanitta nigra being disturbed during a survey carried out at an 

altitude of 270 m, but not being disturbed during a survey carried out at an altitude of 

450 m (Thaxter and Burton, 2009).  The target species appeared to show little 

response to aircraft at heights of around 300 m (Thaxter and Burton, 2009) and as 

Common Scoter were neither the key target for this survey nor likely to be present in 

significant numbers within the survey area, 300 m was felt to be a reasonable 

compromise between minimising any risk of disturbance to seabirds and ensuring 

sufficient image quality for analysis.  

 

In order to optimise the quality of the imagery, the plane was flown at a speed of 

approximately 240 km/h. Surveys were carried out on 20 and 22 September 2017.  

In contrast to traditional aerial surveys, where the objective is to generate abundance 
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and/or density estimates, the purpose of this survey was to trial a methodology for 

collecting flight height information.  Consequently, we were not restricted by weather 

constraints in the way we would have been had we been collecting abundance data 

to generate estimates of population size.  On 20 September, the eight transects were 

covered once over a period of 1.5 hours.  The conditions were overcast with light 

wind and no rain, sea conditions were relatively calm.  On 22 September, the 

surveys were carried out over a period of 4.5 hours, during which time all eight 

transects were covered twice and four of the transects were covered a third time. 

Conditions during this flight were similar to those recorded during the first although, 

wind direction had changed, meaning transects were aligned from east to west 

(perpendicular to those shown in Figure 2) in order to optimise flight conditions.  A 

second survey that day was abandoned after 45 minutes as the light drizzle at the 

beginning of the flight turned to heavy rain.  For more details about the equipment, 

survey site selection and fieldwork, see Appendix 1.  

 

Equipment 

 

To collect data on seabird flight heights, the aircraft was equipped with a Riegl 780i 

LiDAR system and a Phase One iXA180 Camera.  The camera was set with a 1.6 

seconds repetition rate, enabling a 60% spatial overlap between images, provided 

associated imagery to identify individual birds to species level.  The Riegl 780i 

LiDAR is a near-infrared waveform system with a high laser pulse repetition rate of 

up to 1 MHz.  This reflected a need to collect data from across a relatively broad 

area above the sea-surface.  From an altitude of 300 m above sea level, the LiDAR 

had a point density of approximately 11 points m-2 on the sea surface and a swath of 

approximately 300 m.  The camera had a Ground Sample Distance of approximately 

3.5 cm and a swath of approximately 350 m.  

 

Validation Exercise 

 

The initial validation exercise was planned to coincide with the main data collection. 

However, adverse weather conditions meant that it was not possible to carry out this 

work as planned.  Consequently, the validation exercise was re-arranged and carried 

out on the western coast of Zealand in Denmark on 6 April 2018.  The aircraft and 

equipment for this validation exercise were set up so as to minimise any differences 

with the main study in order to ensure that the results were transferable.  

 

Three drones were flown simultaneously at heights of approximately 10 m, 40 m and 

80 m above sea level.  The drones were then overflown by an aircraft equipped with 

a Riegl 480i LiDAR scanner (which has a similar specification to the Riegl 780 LiDAR 
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used for the main study).  As with the main survey, the plane flew at an altitude of 

approximately 300 m above sea-level and at a speed of approximately 240 km h-1. 

This gave a point density of approximately 10 points m-2 at ground level.  The drones 

were overflown seven times.  On four occasions the drones were stationary and on 

three occasions the drones were moving at speeds of 7-15 km h-1, taken as 

representative of seabird flight speed (Alerstam et al., 2007).  The height of each 

drone was then estimated using on board GPS, LiDAR and photogrammetry based 

on overlap of the images from the drones and the presence of marked control points 

of known height.  For more details of the validation exercise, see Appendix 1. 

 

Data Processing 

 

Initially, the internal geometry (angle and distance to points) of the LiDAR dataset 

was analysed in order to isolate single points, or groups of points, that could be the 

reflections of birds in flight. In order to estimate flight height, points which were 

classified as birds were compared to those which were classified as sea.  The height 

of each point in the LiDAR cloud was measured in relation to the European 

Terrestrial Reference System 89 (ETRS89), the EU recommended frame of 

reference for European geo-data.  Flight height estimates made using traditional 

digital aerial surveys are based on calculations made in relation to the altitude of the 

survey aircraft (Thaxter et al., 2016).  Where there is error associated with the 

estimation of the altitude of the survey aircraft, this is introduced into the estimation 

of seabird flight height.  Flight height estimates made using LiDAR are made in 

relation to the position of the sea surface, generating a precise measurement of 

seabird height above sea-level which was independent of the height of the survey 

aircraft.  The flight speed of the plane meant that any individual bird could not be 

captured by more than one set of LiDAR points.  

 

As is the case with RADAR, sea-swell may interfere with estimates of seabird flight 

height resulting in too many false positive records of seabird flight heights for the 

data to be reliable.  Consequently, a minimum height threshold was set in order to 

ensure that the resulting dataset did not contain too many false positive estimates of 

seabird flight heights.  This minimum threshold varied in relation to weather 

conditions.  In calmer conditions on 20 September 2017, it was possible to lower this 

threshold to 1 m above sea level, for the first survey on 22 September a threshold of 

1.5 m above sea level was possible and, as weather conditions worsened, for the 

second survey on 22 September, a threshold of 2 m above sea level was possible.  

 

Having identified potential birds within the LiDAR point cloud, the average position of 

each set of points (height, latitude and longitude) was determined based on the 
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angle and time taken for each LiDAR pulse to return to the LiDAR system.  This 

information was then used to pinpoint the location of the bird in photographs taken 

before and after the LiDAR pulse.  The LiDAR equipment and the camera were both 

attached to an Inertial Measurement Unit (IMU) on board the aircraft.  The IMU 

precisely measures acceleration in three directions to survey grade accuracy.  This 

meant that the images from the camera could be matched to the information from the 

LiDAR with a high degree of accuracy.  

 

The photographs were then passed to an ornithologist for identification.  In order to 

help identify which bird the LiDAR record related to in instances where two or more 

birds occurred on the same photographs, the LiDAR point(s) were projected onto the 

image.  No points above the minimum thresholds were identified as anything other 

than birds. 

 

Simulations 

 

Approaches such as kernel density plots are a relatively simple and straightforward 

way of describing the underlying distributions of data such as the estimates of flight 

height collected as part of this study.  However, such an approach is likely to result in 

a flight height distribution which is over-fitted to the underlying data.  The data 

collected during this study were samples from the true flight height distributions of 

the species using the study area.  A kernel density plot would describe this sample 

exactly, but may not be an accurate representation of the true underlying distribution. 

To describe the true, underlying distribution, we attempted to fit the data using a pre-

defined distributional form (Johnston and Cook, 2016).  However, in order to do this, 

it was important to identify a distribution that was sufficiently flexible to describe a 

broad range of data.  This helped to ensure that we were able to describe the 

underlying flight height distribution, rather than just the sample that we have 

collected from that distribution.  

 

In order to achieve this, we simulated datasets informed by the survey data in which 

the underlying distribution was either a normal, log-normal, gamma, normal-mixture 

or gamma-mixture distribution using the mixtools (Benaglia et al., 2009) and 

fitdistrplus (Delignette-Muller and Dutang, 2015) packages in the R statistical 

package (R Core Team, 2014).  We then attempted to fit each distribution to each 

simulated dataset in turn.  In order to determine how sample size influenced the 

ability to fit distributions to data we considered samples of 10, 25, 50, 75, 100, 150 

and 200 individuals from each simulated dataset.  For each underlying distribution 

and each sample size, we repeated this process 1,000 times.  
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Following Johnston & Cook (2016) we assessed how well each distribution fitted the 

simulated datasets in three ways: 

 

1. Visual comparison of the fitted distributions and the simulated datasets they 

were derived from; 

2. Comparison of the predicted and observed proportions of birds from simulated 

datasets within a 20-120 m collision risk window (as defined in Johnston et al., 

2014); 

3. Assessment of the difference between fitted distributions and the simulated 

datasets summed in 10 m height bands (0-10 m, 10-20 m, etc.).  

 

Flight Height Modelling 

 

We used the outcome of the simulation exercise in order to determine which 

distribution best fitted the data.  Initially, we produced flight height distributions based 

on data from all three surveys.  However, the minimum threshold above which flight 

height data was collected varied from 1-2 m above sea level.  Therefore, to ensure 

consistency between surveys, we only considered records of birds that were a 

minimum of 2 m above sea level when we modelled the full dataset.  

 

The survey aircraft may be thought of as being at the tip of a pyramid (Figure 3).  As 

both the LiDAR points and the digital imagery originate from this point, towards the 

edge of the survey transects, the probability of detecting a bird in flight will decline as 

its flight height increases.  This may lead to the modelled flight height distributions 

being negatively biased.  In order to test this, we used basic trigonometry to 

calculate the horizontal distance of each bird from the survey aircraft.  We then 

compared modelled distributions and the proportion of birds estimated to be at 

collision risk height for all birds, birds within 150 m of the survey aircraft horizontally, 

birds within 125 m of the survey aircraft and birds within 100 m of the aircraft.  This 

analysis was used to determine the optimal horizontal distance from the survey 

aircraft with which to produce the final modelled distribution.  We then compared this 

distribution to distributions based on each individual survey.  Comparison of 

modelled distributions from the first and third surveys also enabled us to understand 

the implications of excluding birds with a flight height of 1-2 m from the final analysis.  
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Figure 3: The LiDAR and camera system are within an aircraft which is effectively at the tip 
of a pyramid, meaning that towards the edges of the survey transect, the probability of 
detecting a bird in flight varies with the height at which that bird flies.  

 

Comparison with Previous Studies 

 

Flight height data have previously been collected using boat-based surveys, digital 

aerial surveys and tagging data (Cleasby et al., 2015; Johnston et al., 2014; 

Johnston and Cook, 2016).  For boat-based surveys and digital aerial surveys, data 

were used to derive continuous flight height distributions.  We compared the flight 

height distributions derived from the LiDAR data to those derived in these previous 

studies (Johnston et al., 2014; Johnston and Cook, 2016).  

 

Cleasby et al. (2015) collected flight height data from 16 northern gannets fitted with 

GPS tags and altimeters in the Outer Forth and Tay Estuaries between mid-June 

and mid-August 2010 and 2011.  They modelled flight heights, as measured using 

the altimeters, using a Generalized Additive Mixed Model (Wood, 2006) which 

included an isotropic smooth of latitude and longitude, enabling spatial predictions of 

flight height.  Trip number nested within bird identity was included as a random 

effect.  Although the studies did not overlap in time, the study area considered by 

Cleasby et al. (2015) encompassed that covered by the present LiDAR study.  To 

enable comparison with the spatial patterns in flight heights obtained from altimeters 

by Cleasby et al. (2015), we, therefore, used a similar modelling approach to also 

explore spatial patterns in flight heights of northern gannets, as recorded by LiDAR 

in the present study.  We modelled flight height data collected using LiDAR using a 



13 
 

Generalized Additive Model (Wood, 2006) again with an isotropic smooth of latitude 

and longitude.  

 

Three-Dimensional Modelling of Black-Legged Kittiwake and Gull Flight 

Heights 

 

Following the approach described above for northern gannet, we also applied the 

same approach to model spatial patterns in the flight heights of black-legged 

kittiwakes and other gulls within the study area.  We again modelled the flight height 

data collected using LiDAR using a Generalized Additive Model with an isotropic 

smooth of latitude and longitude, enabling spatial patterns in flight heights to be 

examined.  
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Results 

 

Data Collection 

 

A total of 2,487 LiDAR clusters were identified as potentially containing birds.  Of 

these, on closer inspection, birds could not be found in the photographs relating to 

286 (11%) of these records.  These clusters consisted of less than four LiDAR points 

and are considered to most likely relate to suspended matter in the air.  The most 

abundant identified species were northern gannet and black-legged kittiwake (Table 

1).  A large number of grey-backed gull species were also identified in the imagery. 

Given the location and the time of year, it is almost certain that these were black-

legged kittiwake (HiDef, 2016) and they were treated as such in subsequent 

analyses.  The data also included records of a large number of unidentified birds. 

This was the result of a technical issue causing equipment vibration and meant that 

the image resolution was too poor to allow species identification.  If the unidentified 

birds were not randomly distributed in relation to height above sea level, this had the 

potential to bias any modelled flight height distribution.  However, analyses of these 

data using a Generalised Linear Model with a binomial error structure (identified/not 

identified) (Figure 4), suggested that the proportion of unidentified birds did not vary 

in relation to flight height.  
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Table 1 
 
The number of birds of each species/group recorded during surveys on 20th and 22nd 
September 2017. 
 

 20 Sep 22 Sep  
1st Survey  

22 Sep  
2nd Survey 

Total 

Northern 
gannet 

114 164 99 377 

Auk species 0 7 2 9 

Great skua 0 1 0 1 

Tern species 0 1 0 1 

Black-legged 
kittiwake 

17 33 195 245 

Lesser black-
backed gull 

1 1 0 2 

Grey backed 
gull species 
(probably 
black-legged 
kittiwake) 

103 355 103 561 

Gull species 45 227 34 306 

Unidentified 200 433 66 699 

TOTAL 480 1,222 499 2,201 
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Figure 4: Proportion of unidentified birds by height band.  The number of birds in each 
height band given above the bars.  
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Figure 5: The number of LiDAR points associated with bird records in relation to height 
above sea-level.  Lines indicates median estimates, box indicates 25th & 75th quartiles and 
error bars indicate 1.5 x interquartile range. 

 

Each bird detection for which a flight height estimate was calculated reflected 

between three and 13 LiDAR points (Figure 5).  As may be expected, given the 

relative size of the species concerned, northern gannets typically reflected more 

LiDAR points than was the case for black-legged kittiwake.  However, for given 

species or species groups, the number of LiDAR points reflected did not appear to 

vary in relation to bird flight height.  Similarly, for given species or species groups, 

there did not appear to be any obvious relationship between the number of LiDAR 

points reflected and the horizontal distance of the bird from the transect line (Figure 

6).  If birds at lower altitudes or at greater distance from the transect line had been 

found to reflect a lower number of LiDAR points, it may imply that they were harder 

to detect, which would have had implications for the subsequent analysis.  Distance 

from transect and bird flight height will combine to determine the distance between 

the bird and the LiDAR equipment.  It is this distance which may determine the 

number of LiDAR points returned by each bird.  Consequently, for each species the 

number of points returned was modelled in relation to an interaction between the 

height of each bird and its distance from the transect line using a generalised linear 

model with a Poisson error structure.  There was no significant effect of this 

interaction for any of the three species.  
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Figure 6: The number of LiDAR points associated with bird records in relation to distance 
from transect line.  Lines indicates median estimates, box indicates 25th & 75th quartiles and 
error bars indicate 1.5 x interquartile range. 

 

Data were collected from along a transect line.  Consequently, the area covered by 

the LiDAR is a vertical triangle in shape, while the camera covers a pyramidal 

volume, in each case with the survey aircraft at the tip.  The area covered by the 

camera was sufficient to detect all of the birds detected using the LiDAR (Figure 7a). 

However, the shape of the area covered by the LiDAR and camera meant that birds 

at higher altitudes towards the edge of the area covered by the equipment were less 

likely to be detected.  This is reflected by a significant drop off in the proportion of 

birds detected at distances greater than 125 m from the transect line (Figure 7b). 

This has the potential to negatively bias modelled flight height distributions, because 

birds at higher altitude towards the edge of the area covered by the LiDAR will not be 

detected.  
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Figure 7: (a) Location of birds detected by LiDAR in relation to LiDAR peak detection zone 
and area covered by camera.  Note that birds may be detected beyond the area of peak 
LiDAR detection.  (b) Density of birds detected in relation distance from aerial survey 
transect line.  Broken red lines reflect 125 m either side of the transect line. 

 

Data Validation 

 

All three drones were clearly detected by LiDAR in all seven of the flights over the 

study area (Figure 8).  For each drone, between two and nine LiDAR points were 

returned, and this variation appeared to reflect the size of the drones.  The accuracy 

of the LiDAR point cloud was assessed against the height of 12 GPS surveyed 

ground control points.  The average difference between the LiDAR measurements 

and those measured using GPS for these ground control points was 6 cm (± 2.5 cm 

SD).  
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Figure 8: Digital terrain model of the site used for the data validation exercise created using 
data collected during one of the overflights.  Each of the drones is clearly visible in this 
image.  

 

Extracting height estimates from the drones on board GPS proved challenging for 

two reasons.  Firstly, the heights recorded by the drones on board GPS were not 

precisely related to the absolute reference system used by the LiDAR.  Secondly, it 

was not possible to have an exact match of the timestamps of the data collected 

using LiDAR and the height estimates recorded by the drone GPS.  Furthermore, it 

proved to be not possible to extract height data from the GPS of one of drones. 

However, it was also possible to use the camera images collected using the drones 

to estimate height using photogrammetry.  Despite these challenges, LiDAR flight 

height estimates proved to be highly accurate, and within 1 m of those measured 

using GPS or photogrammetry (Table 2).  
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Table 2 
 
Difference in metres between flight heights (z) measured using LiDAR and those 
measured using drone-mounted GPS or photogrammetry.  
 

Drone id. Flight 
Session 
Number 

Position 
of Drone 

Height 
Band 

Difference 
Drone-z 
vs. 
LiDAR-z 
(m) 

Difference  
Photogrammetry-
z vs- LiDAR-z (m) 

MikroKopter 
Octo 

1 Fixed 80 m -0.94  

 2 Fixed  +0.64  
 3 Fixed  +0.53  
 4 Fixed  +0.22  
 5 In 

movement 
 -0.43  

 6 In 
movement 

 +0.10 +0.17 

 7 In 
movement 

 +0.33  

DJI Matrice  1 Fixed 40 m   
 2 Fixed    
 3 Fixed    
 4 Fixed    
 5 In 

movement 
  +0.33 

 6 In 
movement 

   

 7 In 
movement 

   

MikroKopter 
Hexa 

1 Fixed 10 m +0.17  

 2 Fixed  +0.17  
 3 Fixed  -0.17  
 4 Fixed  -0.17  
 5 In 

movement 
 +0.71  

 6 In 
movement 

 +0.12  

 7 In 
movement 

 -0.12  

  

Simulations 

 

The flexibility of the distributions used to fit the simulated data varied, with some 

offering a better fit than others.  In addition to affecting how well the fitted 

distributions explained the simulated datasets, sample size also affected the ability of 
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some of the distributional forms to model the data.  Using the simpler distributional 

forms – normal, log-normal and gamma distributions – it was possible to produce 

modelled distributions for all sample sizes.  However, for the more complex normal-

mixture and gamma-mixture distributions, it was not possible to produce modelled 

distributions for sample sizes of less than 100 birds.  

 

Visual Comparison of Simulated Data and Distributions Fitted to these Data 

 

As might be expected, as the sample sizes in simulations increased, the match 

between the fitted distributions and the simulated data improved noticeably (e.g. 

Figure 9).  As the sample size increases, the variation in the shape of the 

distributions of simulated data decreases, meaning that it is possible to produce a 

fitted distribution which more realistically reflects the underlying data.  

 

     

10 Birds 25 Birds 50 Birds 100 birds 200 birds 

 
Figure 9: Example of data simulated from a normal distribution (red lines) with sample sizes 
of 10, 25, 50, 100 or 200 birds and the predicted distributions (blue lines) that were fitted to 
these data assuming an underlying normal distribution.  

 

There was also a noticeable difference in how well the different model distributions 

fitted the simulated datasets.  For example, when data drawn from a normal-mixture 

distribution were fitted to a normal distribution, there was a clear separation between 

the fitted and observed values (Figure 10).  However, when data drawn from a 

normal distribution were fitted to a normal-mixture distribution, there was more 

overlap between the fitted and observed values.  Visual inspection of the plots 

suggested that the normal-mixture distribution was best able to fit a broad range of 

distributions.  
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Figure 10: Using a sample size of 100 birds, (a) simulated data from an underlying normal-
mixture distribution were fitted using a normal distribution, and (b) simulated data from an 
underlying normal distribution were fitted using a normal-mixture distribution. 

 

Comparison of Predicted and Observed Proportions of Birds from Simulated 

Datasets within Collision Risk Window 

 

Based on the simulated datasets, there were clear differences in how well the 

predicted proportions of birds at collision risk height compared to the observed 

proportions.  This varied depending on the distributions that were used to describe 

the data (Figure 11).  In general, there was a tendency for the normal distribution to 

over-predict the proportion of birds at risk height and the log-normal distribution to 

under-predict the proportion of birds at risk height.  Predictions made assuming a 

gamma or gamma-mixture distribution did not show any strong tendency for over- or 

under-prediction, but were quite variable in comparison the observed proportion of 

birds at collision risk height.  The predictions made using the normal mixture 

distributions most closely matched the observed values (Figure 11).  Sample size did 

not noticeably affect how well the predicted proportion of birds at risk height matched 

the observed proportion. 

(a) (b) 
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Figure 11: Comparison of observed and predicted proportions of birds at collision risk 
height.  The true distributions reflect simulated data drawn from underlying gamma, gamma 
mixture, log-normal, normal or normal mixtures.  The fitted distributions reflect descriptions 
of these simulated data using gamma, gamma mixture, log normal, normal or normal mixture 
models.  The size of each point is scaled to reflect the sample size of the simulated data. 
Points closer to the line reflect predicted proportions that better match those observed.  
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Difference Between Simulated Datasets and Fitted Distributions 

 

For all simulated datasets, the magnitude of the error in relation to the observed and 

predicted proportions of birds at collision risk height was greatest in the lower height 

bands (Figure 12).  The uncertainty surrounding the total estimated error was also 

greatest in the lower height bands.  Overall, the normal-mixture distribution produced 

predictions that most closely matched the simulated data.  

 

 

Figure 12: Mean total summed error in the observed and predicted proportions of birds at 
collision risk height in 10 m height bands between datasets of 100 flight height estimates 
simulated from gamma, gamma-mixture, log-normal, normal and normal mixture distributions 
and gamma, gamma-mixture, log-normal, normal and normal mixture distributions fitted to 
simulated data.  Broken grey line indicates a summed error of 0 (i.e. no error between the 
fitted distributions and simulated data).  
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Flight Height Modelling 

 

Using a normal-mixture distribution, modelled flight height distributions appeared a 

good fit for the data collected during the surveys (Figures 13-15).  The modelled 

flight height distributions for northern gannets flying in excess of 2 m above sea level 

were similar regardless of whether all records were included in the analyses or, the 

distributions were limited to birds flying within 150, 125 or 100 m of the transect line 

(Figure 13).  However, there was a notable increase in the number of birds at 

collision risk height when birds more than 125 m from the transect line were 

excluded from the analysis (Figure 13).  Presuming that birds are distributed 

randomly in relation to the transect line, this suggests that towards the edge of the 

area covered by the survey equipment, some birds at higher altitudes may be 

missed, negatively biasing the modelled flight height distributions.  A similar pattern 

was observed for black-legged kittiwakes (Figure 14).  In the case of unidentified 

gulls, excluding birds at distances greater than 100 m from the transect line resulted 

in a reduction in the proportion at collision risk height, this is likely to indicate that 

excluding birds beyond this distance means insufficient data remain in order to 

derive a robust distribution.  This suggests that limiting analyses to birds within 100 

m of the transect line may reduce our ability to fit a robust model to the data. 

Consequently, subsequent analyses are limited to birds within 125 m of the survey 

transect line.  
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Figure 13: Modelled flight height distributions for northern gannets flying at least 2 m above 
sea level for all birds and for birds within a horizontal distance of 150 m, 125 m or 100 m of 
the survey transect line.  The proportion of birds at collision risk height (Prop. At CRH) was 
estimated for each subset of the data assuming a rotor swept area of 20-120 m above sea 
level (as defined in Johnston et al., 2014).  Black line and grey polygon indicate fitted values 
and 95 % CIs, red line indicates observed data.  
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Figure 14: Modelled flight height distributions for black-legged kittiwakes flying at least 2 m 
above sea level for all birds and for birds within a horizontal distance of 150 m, 125 m or 100 
m of the survey transect line.  The proportion of birds at collision risk height (Prop. At CRH) 
was estimated for each subset of the data assuming a rotor swept area of 20-120 m above 
sea level (as defined in Johnston et al., 2014).  Black line and grey polygon indicate fitted 
values and 95 % CIs, red line indicates observed data.  
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Figure 15: Modelled flight height distributions for unidentified gulls flying at least 2 m above 
sea level for all birds and for birds within a horizontal distance of 150 m, 125 m or 100 m of 
the survey transect line.  The proportion of birds at collision risk height (Prop. At CRH) was 
estimated for each subset of the data assuming a rotor swept area of 20-120 m above sea 
level (as defined in Johnston et al., 2014).  Black line and grey polygon indicate fitted values 
and 95 % CIs, red line indicates observed data.  

 

The modelled flight height distributions for northern gannets were broadly similar 

across all three surveys (Figure 16), likely reflecting the similarity in weather 

conditions across the surveys.  These distributions had an initial peak in the number 

of birds recorded between 2 and 5 m above sea level and a smaller, secondary peak 

in the number of birds recorded between 8 and 13 m above sea level (Figure 16). 

For black-legged kittiwakes, the two surveys undertaken on 22 September had very 

similar flight height distributions (Figure 17).  However, in the case of the first survey, 

there was a more noticeable second peak in the flight height distribution at around 

17 m above sea level.  However, any conclusions regarding differences in flight 
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height distributions across the three surveys must be treated with caution because of 

difference in sample sizes. For unidentified gulls, distributions appeared broadly 

similar across all three surveys (Figure 18). However, comparison was hampered by 

low sample sizes on the first and third surveys.  

 

The similarity of flight height distributions across all three surveys suggests that, in 

the case of the species covered in these analyses, the exclusion of birds flying 

between 1 and 2 m above sea level had limited impact on the final estimated 

distributions.  Furthermore, it suggests that over the narrow window in which the data 

were collected, modelled distributions were likely to be reasonably repeatable 

assuming data were collected during daylight.  However, it should be noted that 

these surveys were carried out over a limited area and within a short timeframe.  If 

there were more variation in the conditions when data were collected (for example, if 

data were collected across multiple seasons), this may not be the case.  

 

Figure 16: Modelled flight height distributions & 95% CIs for northern gannets recorded 
during the LiDAR surveys on 20 and 22 September.  Lower thresholds for recording flight 
heights were 1 m on 20 September, 1.5 m for the first survey on 22 September and 2 m for 
the second survey on 22 September.  Distributions were produced using data for all birds 
recorded within 125 m of survey transect line.  
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Figure 17: Modelled flight height distributions & 95% CIs for black-legged kittiwakes 
recorded during the LiDAR surveys on 20 and 22 September.  Lower thresholds for 
recording flight heights were 1 m on 20 September, 1.5 m for the first survey on 22 
September and 2 m for the second survey on 22 September.  Distributions were produced 
using data for all birds recorded within 125 m of survey transect line.  

 

Figure 18: Modelled flight height distributions & 95% CIs for unidentified gulls recorded 
during the LiDAR surveys on 20 and 22 September.  Lower thresholds for recording flight 
heights were 1 m on 20 September, 1.5 m for the first survey on 22 September and 2 m for 
the second survey on 22 September.  Distributions were produced using data for all birds 
recorded within 125 m of survey transect line.  

 

Proportions of Birds at Collision Risk Height 

 

For northern gannet and black-legged kittiwake, the 95% confidence intervals around 

the proportion of birds estimated to be at collision risk height during each individual 

survey overlapped with the 95% confidence intervals for the number of birds 

estimated to be at collision risk height across all three surveys (Table 3).  However, 

this was not the case for the unidentified gulls where the 95% confidence for the 

proportion of birds estimated at collision risk height from the third survey did not 

overlap with those from all three surveys.  For all three species, it is noticeable that 
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the width of the 95% confidence intervals reduced substantially as the sample size 

increased.  

 

Table 3 
 
The proportion of birds recorded at collision risk height (20-120 m) during each 
survey, with 95% confidence intervals and sample size.  
 

 20 September 22 September 

– 1st survey 

22 September 

– 2nd survey 

All three 

surveys 

Gannet 0.114 

(0.068 – 

0.201) 

N = 88 

0.036 

(0.009 – 

0.088) 

N = 139 

0.056 

(0.018 – 

0.106) 

N = 81 

0.081  

(0.052 – 

0.132) 

N = 308 

Kittiwake 0.046 

(0.014 – 

0.085) 

N = 97 

0.059 

(0.034 – 

0.095) 

N = 328 

0.020 

(0.005 – 

0.038) 

N = 273 

0.043 

(0.030 – 

0.060) 

N = 698 

Gull spp.  0.152 

(0.013 – 0.40) 

N = 21 

0.029 

(0.008 – 0.06) 

N = 199 

<0.001 

(<0.001 – 

0.003) 

N = 30 

0.038  

(0.016 – 

0.067) 

N = 250 

 

Comparison with Boat-Based and Digital Aerial Survey Data 

 

Distributions obtained used LiDAR were very different from those obtained using 

digital aerial survey and boat-based survey data (Figures 19 & 20; Johnston et al., 

2014; Johnston and Cook, 2016).  However, it is important to highlight that the data 

from the digital aerial surveys and boat-based surveys are averaged across multiple 

sites and seasons whilst the LiDAR data come from a single localised location and 

are collected over a narrower time frame.  Furthermore, LiDAR offers greater 

precision in the estimates of flight height than is possible with either boat, or digital 

aerial survey (Johnston et al., 2014; Johnston and Cook, 2016).  Together, these 

factors mean that there is less uncertainty surrounding the distributions derived from 

LiDAR data than those derived from boat and digital aerial survey data (Figures 19 & 

20).  However, it should be noted that as the LiDAR data exclude birds flying below 2 

m, they may over-estimate the proportion of birds at collision risk height.  However, 

this does not appear to have been a significant issue in this case (Figures 19 & 20).  
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Figure 19: Comparison of flight height distribution & 95% confidence intervals for northern 
gannet derived from LiDAR data with those derived from boat (Johnston et al., 2014) and 
digital aerial survey data (Johnston and Cook, 2016). 
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Figure 20: Comparison of flight height distribution & 95% confidence intervals for black-
legged kittiwake derived from LiDAR data with those derived from boat (Johnston et al., 
2014) and digital aerial survey data (Johnston and Cook, 2016). 

 

Comparison with the Results of Cleasby et al. (2015) for Northern Gannet 

 

There were clear differences between the data presented by Cleasby et al. (2015) 

and those collected using LiDAR in this study.  Firstly, the data collected by Cleasby 

et al. (2015) using altimeters typically showed birds at a higher altitude (median 22 

m, IQR 10.1-40.0 m) than the modelled data collected using LiDAR (median 5.1 m, 

IQR 3.1-7.8 m, Figure 21).  Secondly, the LiDAR data revealed finer-scale variation 

in seabird flight heights across the study region (Figure 21).  In particular, the LiDAR 

data suggest two areas, in the north and west of the study region, where northern 

gannet flight heights were noticeably higher than the surrounding area.  
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Figure 21: Flight height data for northern gannet collected using altimeters by Cleasby et al. 
(2015) (a-c) and LiDAR (this study) (d-f).  Initially, data can be visualised using a three-
dimensional scatterplot (a, d) with points above (red) and below (grey) a collision risk 
window of 20-120 m indicated.  These data can then be modelled and presented as 
smoothed plots showing spatial variation in mean flight heights in either two (b,e) or, three 
dimensions (c,f).  

 

The differences between spatial patterns in flight height between the data collected 

by Cleasby et al. (2015) using altimeters and the data from LiDAR likely reflect 

differences in the sampling methodology of each approach.  Firstly, the data 

collected by Cleasby et al. (2015) relate to the breeding season (mid-June to mid-

August) whilst the data presented in this study were collected in late September, 

when many birds are likely to have completed their breeding seasons.  Secondly, 

tagging data reflect 54 foraging trips from 16 breeding adult birds from a single 

colony (Bass Rock) over a broad area.  In contrast, LiDAR data reflect point 

estimates of 377 individual birds including breeders, non-breeders and immatures (of 

377 gannets, 82 were identified as immature and 295 were identified as adults) 

potentially from multiple colonies, utilising a relatively focussed survey area. 

Consequently, the spatial patterns in flight height derived from the tagging data 

reflect extremely detailed information about the movements of a small number of 

birds over a broad area.  In contrast, the LiDAR data reflect a larger sample of birds 

(including juveniles and non-breeding individuals) from a more focussed area, 

meaning it is possible to identify finer scale patterns in northern gannet flight heights. 
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However, it should be noted that, because of the more restricted area over which 

these LiDAR data have been collected, these distributions are less likely to reflect 

the full range of northern gannet flight behaviour (e.g. both foraging and commuting 

flight).  

 

Three Dimensional Modelling of Black-Legged Kittiwake Flight Height 

 

Overall, LiDAR data suggested that black-legged kittiwakes flew at a similar height to 

northern gannets (median 4.4 m, IQR 3.2-6.6 m), although these data exclude any 

birds which may have been flying less than 2 m above sea level.  However, there 

were clear differences in the spatial patterns of flight heights (Figure 22).  There was 

a clear peak in black-legged kittiwake flight heights towards coastal areas in the 

north of the study region (Figure 22).  Away from the coast, additional, lower, peaks 

were noted in the north and south of the study region.  Of these, the northern peak 

appeared to correspond to one of the areas in which northern gannet flight heights 

peaked (Figure 22).  

 

   

 
Figure 22: Flight height data for black-legged kittiwake collected using LiDAR.  Initially, data 
can be visualised using a three-dimensional scatterplot (a) with points above (red) and below 
(grey) a collision risk window of 20-120 m indicated.  These data can then be modelled and 
presented as smoothed plots showing spatial variation in mean flight heights in either two (b) 
or, three dimensions (right).  

 

Three Dimensional Modelling of Gull Flight Height 

 

Overall, LiDAR data suggested that the unidentified gulls flew at a similar height to 

northern gannets and black-legged kittiwakes (median 4.7 m, IQR 3.6-6.3 m).  As 

was the case with both black-legged kittiwakes and northern gannets, there were 

clear spatial patterns in the flight heights of the unidentified gulls (Figure 23).  There 

was a clear peak towards the south of the study region, which corresponded to one 

of the peaks identified in northern gannets (Figure 23).  There was also a secondary 
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peak in the coastal areas to the north of the study region, roughly corresponding to 

the area in which black-legged kittiwake flight heights were found to peak.  

 

   

 
Figure 23: Flight height data for unidentified gulls collected using LiDAR.  Initially, data can 
be visualised using a three-dimensional scatterplot (a) with points above (red) and below 
(grey) a collision risk window of 20-120 m indicated.  These data can then be modelled and 
presented as smoothed plots showing spatial variation in mean flight heights in either two (b) 
or, three dimensions (c).  
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Discussion 

 

Of the six objectives set at the start of the project, we have fulfilled four and partially 

fulfilled the remaining two.  We have successfully tested the novel combination of 

LiDAR and digital imagery as a tool for collecting information about the flight heights 

of seabirds.  We have carried out a successful validation exercise which 

demonstrates that this approach can measure seabird flight heights with a high 

degree of precision.  We have compared the flight heights measured using this 

approach to those collected using boat-based surveys, digital aerial surveys and 

GPS tags.  We have demonstrated how this approach can be used to decrease 

uncertainty in collision risk assessments through the use of spatial modelling of 

species flight heights.  However, we were only able to collect sufficient data to 

produce modelled flight height distributions for two of the five key breeding seabird 

features of UK SPAs.  This reflects technical problems which meant that the 

fieldwork had to be delayed until September, when most of the study species had 

completed their breeding seasons.  

 

Our analyses demonstrate that LiDAR can offer a valuable tool with which to 

estimate seabird flight heights.  In contrast to other approaches, LiDAR is capable of 

measuring seabird flight heights with a high degree of precision, typically within 1 m 

(Table 2).  In comparison, the error associated with bird-borne devices can be more 

variable.  For GPS tags, error varies from approximately 3 m to 14 m depending on 

factors such as the sampling rate that is used (Borkenhagen et al., 2018; Thaxter et 

al., 2018) with a similar level of error for estimates derived from altimeters (Thaxter 

et al., 2016).  The error associated with “high end” laser rangefinders has been 

estimated at approximately 2 m (Borkenhagen et al., 2018) whilst the estimates from 

digital aerial survey are wider and more variable (Johnston and Cook, 2016). 

Consequently, the uncertainty associated with measurements of seabird flight height 

from LiDAR is far lower than the uncertainty associated with measurements made 

using other technologies.  Furthermore, flight heights are estimated relative to the 

sea surface, helping to overcome difficulties associated with negative flight heights 

that may be recorded when using digital aerial surveys, GPS tags or laser 

rangefinders (Borkenhagen et al., 2018; Corman and Garthe, 2014; Johnston and 

Cook, 2016; Ross-Smith et al., 2016).  

 

A key limitation of LiDAR estimates of seabird flight height is that sea-swell may 

interfere with the detection of birds in flight, resulting in a high false positive rate.  For 

the purposes of this study, flight height has been estimated with reference to height 

above the mean sea level generated from each LiDAR pulse.  As part of this study, a 

lower threshold of 1-2 m above sea level, depending on when the survey was carried 
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out, was identified as a point at which the false positive rate was not unacceptably 

high.  As a consequence, the flight height distributions derived as part of this study 

will be biased against birds flying below 1-2 m above sea level i.e. would 

overestimate the proportion on birds at greater altitudes.  However, this compares 

favourably to the use of handheld laser rangefinders on a vessel which may be 

biased against birds flying less than 10 m above sea level (Borkenhagen et al., 

2018).  Furthermore, there is the potential to lower the threshold used in the analysis 

of LiDAR data through further analytical development.  By using an estimate of mean 

sea-level, we are treating the water surface as a smooth plane.  By using a 

topographic model (e.g. Hwang et al., 2000) it would be possible to treat the water as 

a ‘rough’ surface, more reflective of any sea-swell, and identify birds closer to the 

sea-surface.  However, it should be noted that such an approach may result in a 

greater uncertainty surrounding estimated seabird flight heights as these estimates 

would vary depending on whether a bird was detected over a wave or a trough. 

 

To understand the potential consequences of the bias against low-flying birds 

present in the data, we re-calculated the proportion of birds at collision risk height 

presented in Johnston et al. (2014) having excluded those flying below 2 m.  For all 

species, excluding birds flying below 2 m resulted in a modest increase in the 

proportion of birds estimated to be at collision risk height (Table 4).  However, the 

proportional change in the number of birds flying at collision risk height was greatest 

for species whose flight heights meant that they were generally at low risk of 

collision.  Furthermore, even after excluding birds flying below 2 m from the analysis, 

the revised proportion of birds at collision risk height was well within the 95% 

confidence intervals of that calculated from the full distribution (Table 4).  As the 

LiDAR in this study was unable to detect birds flying below 2 m, this is likely to result 

in the distributions presented above over-estimating the proportion of birds at 

collision risk height.  Such an overestimate is likely to lead to a precautionary 

assessment of collision risk.  However, given the overall uncertainty that may be 

associated with estimates of collision risk and flight height behaviour, this 

overestimate is unlikely to be overly precautionary.  In future analyses it may be 

possible to use standard digital aerial survey processing methods to count birds 

flying below the threshold and incorporate these into the distributions by assuming a 

default value (e.g. 1 m).  
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Table 4 
 
A comparison of the proportion of all birds flying at collision risk height (20-120 m 
above mean sea level) and the proportion of birds flying more than 2 m above sea-
level at collision risk height based on the data presented in Johnston et al. (2014) 
 

 Proportion of all birds at 
collision risk height 
(95% Confidence 
Intervals) 

Proportion of birds 
flying above 2 m at 
collision risk height 

Northern Fulmar 0.010 (0.000, 0.092) 0.016 
Northern Gannet 0.126 (0.062, 0.200) 0.155 
European Shag 0.126 (0.020, 0.643) 0.154 
Arctic Tern 0.040 (0.006, 0.143) 0.055 
Sandwich Tern 0.070 (0.061, 0.149) 0.090 
Black-legged Kittiwake 0.150 (0.117, 0.173) 0.181 
Lesser Black-backed Gull 0.281 (0.203, 0.431) 0.319 
Herring Gull 0.319 (0.252, 0.412) 0.357 
Great Black-backed Gull 0.324 (0.325, 0.428) 0.363 
Common Guillemot 0.004 (0.000, 0.102) 0.007 
Razorbill 0.027 (0.000, 0.137) 0.038 

 

Over the restricted time period in which this study was carried out, the modelled 

distributions from each individual survey were found to be reasonably similar 

(Figures 16-18), suggesting that these distributions may be repeatable.  However, it 

is also important to note the differences between the modelled flight height 

distributions produced in this study and those produced in previous studies in which 

data were aggregated across multiple sites and seasons (Johnston et al., 2014; 

Johnston and Cook, 2016).  It is difficult to determine the extent to which these 

differences relate to genuine spatial and/or seasonal patterns in flight height 

behaviour or biases associated with the platforms from which data were collected, 

particularly in relation to boat-based surveys (Camphuysen et al., 2004).  However, 

in combination with past studies, the results highlight the importance of additional 

data collection in order to gain a better understanding of the site and seasonal 

differences in species flight heights.  These differences can then be taken into 

account as part of the strategic planning for future offshore wind farm rounds.  The 

objectives of such surveys would not be to collect data on abundance. 

Consequently, these would not have the same constraints in relation to weather and 

sea conditions as standard digital aerial surveys.  However, the consequences for 

data analyses of increased sea clutter in poor conditions need careful consideration.  
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Future Applications 

 

Species flight heights are known to vary spatially and temporally (Cleasby et al., 

2015; Corman and Garthe, 2014; Ross-Smith et al., 2016).  This variation may be 

influenced by behaviour, for example whether birds are actively foraging or, 

commuting between breeding colonies and preferred foraging areas (Cleasby et al., 

2015).  In order to fully understand the extent of this variation and what influences it, 

more data are required from a wider range of sites, seasons and conditions.  In order 

to understand how the presence of a wind farm may influence species flight 

behaviour, this should include a survey area which incorporates a wind farm and a 

substantial buffer area.  Similar surveys have been carried out in order to assess the 

distribution of northern gannets in relation to an offshore wind farm (APEM Ltd., 

2014).  These surveys suggest that it may be challenging to collect sufficient data to 

enable producing a modelled flight height distribution for northern gannet within a 

wind farm.  However, given that black-legged kittiwake and large gulls show little 

displacement by, and may even be attracted to, offshore wind farms, it should be 

possible to gain a sufficient sample size for these species (Dierschke et al., 2016; 

Vanermen et al., 2015). 

 

As with traditional digital aerial surveys, a key limitation in flight height estimates 

using the approach described in this study is the difficulty in collecting data at night. 

We know from GPS tracking studies that flight height may differ between day and 

night (Ross-Smith et al., 2016).  As with traditional digital aerial surveys, the key 

limiting factor in using LiDAR to estimate the flight height of birds at night is the need 

for digital imagery to accompany the LiDAR data in order to confirm the presence of 

a bird and identify the species concerned.  However, there may be the potential to 

combine LiDAR with thermal imaging technology in order to detect birds at night (e.g. 

Kinzel et al., 2006).  Thermal imaging techniques have previously been used to 

detect birds moving in and around offshore wind farms (Desholm et al., 2006).  At 

present, such technology may be insufficient to precisely identify the species 

concerned, but it may be possible to assign birds to rough species groups (e.g. large 

gulls, gannet, etc.). 

 

Spatial patterns in species flight heights can be mapped, enabling an assessment to 

be made of the likely collision risk in any given area (Figures 21-23).  In order to 

examine spatial patterns in collision risk in more detail, these can be compared to 

the spatial distribution of birds in flight detected by LiDAR (Figure 24).  This 

comparison can then be used to identify areas with concentrations of birds flying at 

heights which may place them at risk of collision with wind turbines.  
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Figure 24: LiDAR data can be used to produce kernel density estimates of the distribution of 
birds in flight and show patterns of spatial variation in species flight heights.  The kernel 
density estimates of species distributions can then be overlaid on to plots showing spatial 
patterns in species flight heights, enabling the two to be compared.  

 

The models of the distribution of seabirds in flight and the heights at which they fly 

presented in this report (Figure 24) are relatively simple analyses based on spatial 

smoothing.  However, there is the potential to improve these models through the 

incorporation of environmental variables, for example in relation to oceanographic or 

wind conditions (Ainley et al., 2015; Scott et al., 2013; Spear and Ainley, 2008).  This 

would enhance the predictive capability of these models, potentially enabling 

assessments of collision risk to be extrapolated over a broader spatial area. 

Irrespective of whether environmental variables are included, the models of the 

distribution of seabirds in flight and the heights at which they fly presented in this 
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report provides an approach that is likely to be of value as a tool to the marine spatial 

planning of the offshore wind sector. 

 

The accuracy of estimates of bird flight speed can have a significant impact on 

predictions about collision risk (Fijn and Gyimesi, 2018; Masden, 2015; Skov et al., 

2018).  However, published estimates of flight speed are often based on a limited 

sample of birds (e.g. Alerstam et al., 2007) and, as with flight height, it is clear that 

there may be spatial patterns in flight speed related to birds behaviour (Fijn and 

Gyimesi, 2018).  A detailed assessment of species flight speeds has been 

highlighted as a key gap in knowledge in relation to assessments of collision risk at 

offshore wind farms (Masden, 2015).  The approach to data collection used in this 

study could enable the estimation of species flight speeds.  The birds detected by 

the LiDAR feature in two photographs, one immediately prior to the LiDAR pulse and 

one immediately after the LiDAR pulse.  These photographs can be georeferenced 

and, because we have an accurate estimate of species flight height from the LiDAR, 

the distance travelled by the bird between the two photographs can be estimated 

using trigonometry.  As we also know the time between each photograph, the flight 

speed of the bird in question can then be estimated.  Having done this, it would be 

possible to either produce a modelled distribution of species flight speeds, as we 

have done in relation to flight height or, to look at spatial variation in flight speed, as 

in Figure 24.  Combining plots of spatial patterns of species flight speed with those of 

flight height and distribution would further improve spatial assessments of collision 

risk, such as those which could be inferred from Figure 24.  In additional to being of 

value in relation to planning for the offshore wind sector, such assessments may be 

of value for wider marine spatial planning purposes as they may enable an 

assessment of spatial patterns in behaviour from which it may be possible to infer 

how birds are using any given area (e.g. in relation to foraging, commuting or, 

migration).  

 

Best Practice Recommendations 

 

LiDAR offers a valuable tool with which to estimate seabird flight heights.  As the 

methodology and approaches to data processing develop this technique may be a 

valuable addition to traditional digital aerial surveys.  Indeed, as methodologies 

develop, LiDAR may help reduce the costs of traditional digital aerial surveys by 

reducing the time needed for data processing if it can be used to filter images in 

which birds are present on the sea surface. 
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Based on our experiences with this approach, we make the following 

recommendations for future studies:  

 

 In order to balance the risk of disturbance to birds with the need for high 

resolution imagery and high LiDAR point density, we recommend a minimum 

survey aircraft altitude of 300 m above mean sea-level for survey aircraft.  As 

technology and analytical approaches improve, it is likely to be possible to 

increase this altitude further. 

 In order to optimise the imagery, the flight speed of the survey aircraft and the 

repetition rate of the camera should be optimised to ensure a minimum image 

overlap of 60% in order to aid identification of birds detected by LiDAR.  For 

the purposes of this study, this reflected a ground speed of approximately 240 

km h-1 and a camera repetition rate of 1.6 seconds. 

 To achieve a greater level of certainty in identification and a reduction in the 

birds assigned to only species group level e.g. grey gulls, requires higher 

photographic resolution than was used in this study.  It is considered, based 

on digital aerial surveys undertaken elsewhere, that a resolution of 2.5 cm 

Ground Sampling Distance will be adequate in most instances. 

 The point density of the LiDAR should on survey be at least 10 points/m2 at 

sea level to optimise on coverage in transect by the LiDAR.  

 Careful consideration should be given to ensuring that factors such as sea-

swell do not result in a high false positive rate when identifying birds in flight. 

A high false positive rate may make it difficult to determine how LiDAR points 

relate to birds in the accompanying photographs.  Determining a threshold 

below which the high false positive rate means data should be excluded from 

the analysis is a key stage in data processing.  This threshold may vary 

depending on weather conditions.  

 The camera and LiDAR imagery originate from a single point.  This means 

that the three dimensional shape over which data are collected is a pyramid. 

The consequence of this is that as the altitude of birds in flight increases, the 

probability of them being detected decreases.  Note that this is an issue for 

flight heights measured using existing digital aerial survey protocols as well as 

LiDAR.  This difficulty can be overcome if the location of the bird is pinpointed 

in three dimensions by recording both the duration and angle of the return 

pulse from the LiDAR.  By pinpointing the location of the bird in three 

dimensions, difficulties in relation to detecting birds may be overcome either 

through the application of statistical approaches such as occupancy 

modelling, or by filtering based on distance from transect line, as in Figure 7. 
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 In order to overcome this difficulty, the angle of the bird relative to the LiDAR 

equipment should be recorded.  This will allow the bird to be located in three 

dimensions with a high degree of accuracy using basic trigonometry.  

 Assuming that birds are randomly distributed in relation to the transects and 

the survey aircraft, when considered across the study region as a whole, the 

distribution of the horizontal distances between the birds and the transect line 

should be relatively even.  This assumption should be confirmed and, if not 

met, data beyond this region should be excluded from analysis.  

 Data represent a sample from the true distribution, rather than the distribution 

itself.  Consequently, simple plots of the proportion of birds recorded at 

different heights will not reflect the true flight height distribution.  Therefore, it 

is important to use the data to produce a modelled distribution of seabird flight 

heights.  However, it is equally important that the distribution these data are 

fitted to is sufficiently flexible to adapt to a range of different shapes.  If the 

distribution is relatively inflexible, the final flight height distribution may be 

constrained to reflect the assumed distribution, rather than the flight heights of 

the species in question.  For this reason, a range of distributions should be 

considered for modelling bird flight heights and, careful consideration should 

be given as to which best matches the observed data.  

 Sample size is a key factor in determining how well a modelled distribution 

can reflect the true underlying distribution.  A minimum sample size of 100 

birds from each site and/or seasons being considered offers an optimal 

balance between being able to fit a robust flight height distribution and a 

realistic level of effort for surveys.  
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APPENDIX 1 

 

Validation Exercise 

 

Aims 

 

The purpose of the validation test is to demonstrate the efficacy and accuracy of a 

LiDAR capture approach by comparing estimated seabird flight heights using 

airborne LiDAR to objects of known height.  Drones are flown at known heights and 

varying speeds. 

 

Initial (Unsuccessful) Data Validation Exercise 

 

The initial data validation exercise was planned for Balruddery Farm, Invergowrie, 

Dundee (56.48˚N, 3.13˚W), with the kind permission of the landowners, the James 

Hutton Institute.  The site was selected on the requirement for a comparatively level 

open area free from obstructions e.g. pylons at no closer than 200 metres, within 

which UK regulations permit the flying of drones and the low level flying of aircraft 

down to approximately 300 m.  The site chosen covered two lowland arable fields 

within proximity to the Tay estuary.  Unfortunately, weather conditions meant that 

this had to be aborted. 

 

To carry out the data validation exercise, it was intended for the survey aircraft to fly 

over the study site for approximately one hour in order to capture the drone with the 

LiDAR equipment.  The flight path for the aircraft when crossing the two fields at the 

site was to start at 56.48˚N, 3.13˚W and end at 56.48˚N, 3.14˚W.  This was 

considered by the aircraft operators (Airtask) to be safe and achievable. 

 

The drone to be used for the survey was a Mikrokopter OKTO XL equipped with a 

GPS, barometric altitude meter and accelerometer.  This drone has a maximum 

diameter of 1 m and a height of 0.38 m.  The Mikrokopter can operate in wind 

conditions of up to gusts of 12 m/s and a temperature range of -15-+35 degrees 

Celsius.  The drone was piloted by a CAA approved pilot (Simon Strickland, Dragons 

Eye Filming [CAA licence no. PA and EUAV1931]).  To comply with CAA licence 

requirements, the pilot maintained direct visual contact with the drone at all times 

and the drone was to be flown below a ceiling height of 120 metres. 

 

The drone was to be flown at known heights and varying speeds, so as to intersect 

under the flight path of the survey aircraft flying at 1,000 feet (305 metres) and no 

lower than 250 metres (820 feet).  
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The data validation exercise was conducted on 20 September 2017 following 

postponement from the previous week due to unfavourable weather conditions. 

Following pre-flight on site checks at Balruddery Farm, the drone was ready to fly at 

10.30 am when the survey aircraft was programmed to begin transecting the site. 

Weather conditions throughout the morning were very favourable for drone flying but 

not for the survey aircraft to depart Inverness Airport until the early afternoon.  The 

survey aircraft arrived at Balruddy Farm to find low cloud levels that meant it was 

unable to proceed with the data validation exercise.  Given no improvement in 

operating conditions forecast for the next 24-48 hours at Balruddy Farm, the data 

validation exercise was aborted following consultation with Marine Scotland (Jared 

Wilson). 

 

Successful Data Validation Exercise 

 

Technical Set-Up and Survey Location 

 

The LiDAR survey was carried out using a Riegl 480i scanner (same scanner family 

and with a polygon mirror as for the Riegl 780 used in the main project).  Survey 

flight height was – as for the main project – approximately 300 m above sea level 

and flight speed approximately 240 km/h.  Resulting point density on ground is 

approx. 10 points/m2.  Survey location was a coastal area at the western coast of 

Zealand in Denmark (55.74˚N, 10.86˚E, Figures A1, A2 & A3).  

 

 
 
Figure A1: Survey location. 
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Figure A2: Close-up, survey location. 

 
 

 
 
Figure A3: Photo from NIRAS drone at survey location (taken during validation exercise). 

 

The validation exercise was carried out on 6 April 2018 with three drones 

simultaneously in the air in three different height bands (10 m, 40 m and 80 m above 

sea level).  The on board instrumentation of the drones was calibrated onsite prior to 

the flights.  The three NIRAS drones (Figure A4) were: 

 

 MikroKopter XL Hexa in the 10 m band. 

 DJI HEXA Matrice in the 40 m band.  

 MikroKopter XL Octo in the 80 m band. 
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Figure A4: The three drones and drone pilots prepared for flight, MikroKopter Hexa at the 
left, the DJI in the middle and the Mikrokopter Octo at the right (a forth drone – at front – was 
brought as back-up). 

 

Drones were overflown by aircraft with the LiDAR equipment a total of seven times 

(Figure A5), four times with drones in fixed positions and three times with drones in 

horizontal movement (speed varying from 7-15 km/hour). 

 

 
 
Figure A5: Aircraft with LiDAR approaching survey site. 

 

The drone exercise was performed with the drones flying over sea.  It was designed 

so that the LiDAR survey covered a corridor of the shore, making it possible to 

include ground-truthed estimates of height as part of the exercise.  Twelve Ground 

Control Points were marked with spray on the shore and measured with geodetic 

GPS (accuracy within 3 cm).  
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The top shield and arms of the drones were plastered with light tape since this 

surface is more likely to represent the colour of seabirds than the normal black 

colour of the drones. 

 

Heights of drones were determined by the drones own registration from GPS and 

barometric altitude.  Also two of the drones were equipped with camera which made 

it possible to calculate the heights of the drones (camera position) by traditional 

photogrammetry based upon image overlap and the marked/GPS measured ground 

control points. This method has a proven accuracy of <5cm. 

 

Results 

 

Ability to ”Hit” the Drones with LiDAR 

 

As a positive (side) result of the validation exercise it was documented that all of the 

three drones were clearly identified in the LiDAR point cloud in all of the seven flights 

(Figure A6).  The number of hits per drone varies from 2-9 (Table A1). 

 

 
 
Figure A6: Terrain model at test site derived from LiDAR point cloud and example from one 
of the seven flights with the drones clearly identified in the point cloud.  

 

It has to be taken into account that the drones have different sizes.  The solid top 

shields of the two MicroKopters are approximately 20 cm in diameter and the top 

shied of the DJI Matrice is approximately. 35 cm in diameter.  There might also be 

LiDAR return signals from arms and propellers, in this sense the MikroKopter Hexa 

is the smallest target due to having fewer arms and a smaller wingspan. 
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Table A1 
 
The number of LiDAR points returned from drones in relation to drone flight height 
and whether or not drones were moving 
 

Drone id. Flight 
session 
number 

Position of 
drone 

Height 
band 

Number 
of hits 

MikroKopter 
Octo 

1 Fixed 80m 4 

 2 Fixed  7 
 3 Fixed  3 
 4 Fixed  4 
 5 In 

movement 
 3 

 6 In 
movement 

 9 

 7 In 
movement 

 7 

     
DJI Matrice 1 Fixed 40m 8 
 2 Fixed  7 
 3 Fixed  6 
 4 Fixed  5 
 5 In 

movement 
 3 

 6 In 
movement 

 8 

 7 In 
movement 

 6 

     
MikroKopter 
Hexa 

1 Fixed 10m 3 

 2 Fixed  3 
 3 Fixed  2 
 4 Fixed  2 
 5 In 

movement 
 3 

 6 In 
movement 

 3 

 7 In 
movement 

 2 

 

Accuracy of the LiDAR 

 

The LiDAR point cloud was checked against the 12 GPS surveyed ground control 

points.  Statistics of the accuracy demonstrates that the average difference between 

true height (from GPS) and height measured from LiDAR is 6 cm (SD 2.5 cm).  
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It can be expected that the LiDAR measurements of the drones/birds has a similar 

accuracy although difficult to prove since a bird (as well as a drone) is not in a fixed 

position within this tolerance. 

 

The test demonstrated that it was more complicated than expected to extract high 

accuracy height information from the drones own GPS- and barometric altitude 

registration since the registrations are not precisely related to the absolute reference 

system and neither to the sea surface. 

 

To compensate for this NIRAS used the camera exposures from two of the drones to 

do a traditional photogrammetric height determination.  Comparing the 

photogrammetric height determination of the drones with the heights from the LiDAR 

survey the difference is 33 cm in one test (DJI drone in 40 band) and 17 cm in 

another test (MikroKopter Octo in 80 m band).  These results are considered to be 

“high accuracy” taking into account that it’s not possible to have an exact match of 

the timestamps from the LiDAR acquisition and from the image exposures.  

 

Based upon these experiences NIRAS conclude that the absolute height positioning 

of the drones by LiDAR is actually better than the height information directly 

registered by the drone. 

 

The heights of the drones based upon LiDAR were compared with the heights 

registered by the drone but with an off-set correction of the height information from 

the drones to match the correct absolute height reference (Table A2).  As for the DJI 

drone it was not possible to extract the internal registration of height, so the 

difference of 33 cm represents the result of the test comparing the photogrammetric 

calculated height with the LiDAR height.  

 

The differences are within 1 m (Table A2).  Again one has to take into consideration 

that it is not possible to have an exact match between the timestamps of the LiDAR 

acquisition and the timestamps of the drone position meaning that the actual LiDAR 

survey is expected to be better. 
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Table A2 
 
Difference in z co-ordinate (altitude) measured using LiDAR and that measured 
using the drone’s on board GPS system or traditional photogrammetry approaches 
 

Drone id. Flight 
session 
number 

Position 
of drone 

Height 
band 

Difference 
Drone-z 
vs. 
LiDAR-z 
(m) 

Difference  
Photogrammetry-
z vs- LiDAR-z (m) 

MikroKopter 
Octo 

1 Fixed 80m -0.94  

 2 Fixed  +0.64  

 3 Fixed  +0.53  

 4 Fixed  +0.22  

 5 In 
movement 

 -0.43  

 6 In 
movement 

 +0.10 +0.17 

 7 In 
movement 

 +0.33  

DJI Matrice  1 Fixed 40m   

 2 Fixed    

 3 Fixed    

 4 Fixed    

 5 In 
movement 

  +0.33 

 6 In 
movement 

   

 7 In 
movement 

   

MikroKopter 
Hexa 

1 Fixed 10m +0.17  

 2 Fixed  +0.17  

 3 Fixed  -0.17  

 4 Fixed  -0.17  

 5 In 
movement 

 +0.71  

 6 In 
movement 

 +0.12  

 7 In 
movement 

 -0.12  



 

 

 


