Scottish Scallop Stocks: Results of 2016 Stock Assessments

Scottish Marine and Freshwater Science Vol 8 No 21
H Dobby, R Fryer, T Gibson, S Kinnear, J Turriff and A McLay

Scottish Scallop Stocks: Results of 2016 Stock Assessments

Scottish Marine and Freshwater Science Vol 8 No 21

Helen Dobby, Rob Fryer, Tom Gibson, Shona Kinnear, John Turriff and Anne McLay

Marine Scotland is the directorate of the Scottish Government responsible for the integrated management of Scotland's seas. Marine Scotland Science (formerly Fisheries Research Services) provides expert scientific and technical advice on marine and fisheries issues. Scottish Marine and Freshwater Science is a series of reports that publishes the results of marine and freshwater scientific work that has been carried out for Marine Scotland under external commission. These reports are not subject to formal external peerreview.

This report presents the results of marine and freshwater scientific work carried out by Marine Scotland Science.

You may re-use this information (excluding logos and images free of charge in any format or medium, under the terms of the Open Government License. To view this license, visit: http://www.nationalarchives.gov.uk/doc/opengovernmentlicence/version/3/ or email: psi@nationalarchives.gsi.gov.uk. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.
1 INTRODUCTION 7
1.1 Scottish Scallop Fisheries: An Overview 7
1.2 Management Framework and Regulations 7
2 DATA COLLECTION AND METHODS 9
2.1 Assessment Areas 9
2.2 Fishery Data 9
2.2.1 Landings Data 9
2.2.2 Catch-at-age Data 10
2.2.3 Discards 10
2.3 Biological Data 11
2.3.1 Length-weight Relationships 11
2.3.2 Natural Mortality 11
2.3.3 Maturity 11
2.4 Research Vessel Surveys 12
2.5 Assessment 13
3 RESULTS AND DISCUSSION BY AREA 14
3.1 Regional and Temporal Trends 14
3.2 Clyde 15
3.2.1 Description of the Fishery 15
3.2.2 Sampling Levels and Age Compositions 15
3.2.3 Assessment 15
3.3 EAST COAST 16
3.3.1 Description of the Fishery 16
3.3.2 Sampling Levels and Age Compositions 16
3.3.3 Biological Data 17
3.3.4 Exploratory Analysis 17
3.3.5 Final Assessment 19
3.3.6 Comparison with Previous Assessments 21
3.3.7 Quality of the Assessment 21
3.4 Irish Sea 22
3.4.1 Description of the Fishery 22
3.4.2 Sampling Levels and Age Compositions 23
3.4.3 Assessment 23
3.5 North EAST 23
3.5.1 Description of the Fishery 23
3.5.2 Sampling Levels and Age Compositions 24
3.5.3 Biological Data 24
3.5.4 Exploratory Analyses 24
3.5.5 Final Assessment 26
3.5.6 Comparison with Previous Assessments 28
3.5.7 Quality of the Assessment 28
3.6 North West 29
3.6.1 Description of the Fishery 29
3.6.2 Sampling Levels and Age Compositions 29
3.6.3 Biological Data 30
3.6.4 Exploratory Analysis 30
3.6.5 Final Assessment 31
3.6.6 Comparison with Previous Assessments 33
3.6.7 Quality of the Assessment 34
3.7 Orkney 35
3.7.1 Description of the Fishery 35
3.7.2 Sampling Levels and Age Compositions 35
3.7.3 Assessment 35
3.8 SheTLAND 35
3.8.1 Description of the Fishery 35
3.8.2 Sampling Levels and Age Compositions 36
3.8.3 Biological Data 36
3.8.4 Exploratory Analysis 36
3.8.5 Final Assessment 38
3.8.6 Comparison with Previous Assessments 40
3.8.7 Quality of the Assessment 40
3.9 West of Kintyre 42
3.9.1 Description of the Fishery 42
3.9.2 Sampling Levels and Age Compositions 42
3.9.3 Biological Data 42
3.9.4 Exploratory Analyses 43
3.9.5 Final Assessment 44
3.9.6 Comparison with Previous Assessments 45
3.9.7 Quality of the Assessment 46
4 GENERAL DISCUSSION 48
4.1 Regional Summaries 48
4.2 Management Considerations 49
4.3 Reference Points 50
4.4 Comments on the Quality of the Data and Assessment 51
5 REFERENCES 55
6 TABLES 58
7 FIGURES 123

Executive Summary

This report presents the results of Scottish regional scallop stock assessments carried out by Marine Scotland Science (MSS) based on commercial catch-at-age data up to 2015 and survey data up to and including 2016. Full analytical assessments are presented for the East Coast, North East, North West, Shetland and West of Kintyre scallop stocks, with catch data presented for the Clyde, Irish Sea and Orkney. The report also provides background information on Scottish fisheries for scallops, a description of the current management and regulatory framework.

The Fisheries

- The Scottish commercial dredge fishery for the king scallop (Pecten maximus) began in the 1930s in the Clyde. It has since expanded around the coast of mainland Scotland and its islands to become the second most valuable shellfish fishery in Scotland. In 2015, total landings into Scotland were in excess of 10,000 tonnes with a value at first-sale of almost $£ 23$ million.
- The most important areas, in terms of recent landings, are the Irish Sea, West of Kintyre, the North West, North East and East Coast. In 2015, over 75\% of landings into Scotland were taken in these areas.
- \quad Some areas, such as the Irish Sea, have shown systematic increases in reported landings, while in other areas the landings are characterised by occasional and rapid increases (or declines). Some of these are associated with fishery closures due to the presence of amnesic or paralytic shellfish toxins, but others appear to be associated with strong year classes and subsequent increased stock abundance.

Stock Trends

- In the East Coast assessment area, relatively high recruitment appears to have maintained spawning stock biomass (SSB) and landings above average between 2005 and 2014. Current estimates of recruitment for 2015 and 2016 are, however, particularly low and SSB has declined since 2014. The decreasing stock size coupled with the relatively high landings results in a generally increasing trend in fishing mortality (F) since 2011.
- In the North East assessment area, SSB has declined sharply in recent years. Recruitment has declined over the last five years and estimates for 2015 and 2016 are particularly low. F has fluctuated without trend over the last ten years.
- At Shetland, following a number of very strong year classes during the mid2000s, recruitment is estimated to be more moderate in recent years. The SSB increased during the 2000s to a maximum in 2010, but has been declining since 2012. Fishing mortality has increased since 2009, in line with the increase in landings, but is still at around the long term average.
- In the North West assessment area, following a period of lower recruitment in the mid-2000s, estimated recruitment has increased and has been above the long term average since 2010. As a result of this and moderate landings, estimated SSB has increased steadily over this period. Recent estimates of fishing mortality are fairly stable at around the long term average.
- In the West of Kintyre assessment area, recruitment is estimated to have increased substantially since 2000 resulting in the highest estimated SSB of the time series in 2012. Since then the stock has remained relatively stable at a high level. This increase in stock size means that despite an increase in landings since 2011, fishing mortality remains relatively low.
- There are insufficient data from the Clyde, the Irish Sea and Orkney assessment areas to perform analytical assessments or evaluate stock trends.

Management Considerations

- There are no agreed biomass or fishing mortality reference points for Scottish scallop stocks. MSS' advice for assessed stocks is provided on the basis of estimates of recent fishing mortality, recruitment and biomass in relation to historical values.
- For the East Coast, North East and Shetland assessment areas, where recruitment and SSB have declined, advice is for no increase in fishing effort and consideration of measures to protect the spawning stock.
- In the North West and West of Kintyre assessment areas, advice is for no increase in fishing effort.
- \quad Several administrations have interests and responsibilities for scallop fisheries in the Irish Sea. There is a need to bring together data from different sources and to develop a more consistent, inclusive approach to the assessment and management of stocks in the area.
- Options for the development of MSY reference points or MSY proxies are discussed in this report. It is hoped to investigate these ahead of the next assessment scheduled for 2018/19.

Data and Quality of the Assessment

- In areas for which sufficient data were available, an age-structured Time Series Analysis (TSA) analytical assessment method was used. TSA makes use of commercial catch-at-age and survey indices by age and can cope with the omission of poor quality or missing data. The estimates of abundance and fishing mortality are calculated with confidence intervals.
- The estimates from TSA are smoothed through time reflecting the fact that fisheries and stocks are likely to show gradual year to year changes. As a result, the estimates are slow to respond, for example, when the data do suggest that there has been a sudden change in the fishery. This can potentially result in under or over estimation of recent fishing mortality.
- Historical trends estimated by the TSA approach show good agreement with MSS' previous stock assessments. The absolute levels of biomass, recruitment and fishing mortality estimated are not directly comparable with previous estimates as different procedures were used to derive these metrics.
- In some assessment areas, commercial sampling levels have fallen in recent years. Although a single year with poor sampling is unlikely to significantly affect the conclusions of the assessment, continued poor sampling levels are likely to result in less precise and potentially biased results.
- MSS dredge surveys are an essential component of the assessment in that they provide fishery independent indices of abundance. They provide reasonably good coverage of the fished areas as indicted by scallop dredge VMS data (over the period for which these data are available) except in the West of Kintyre assessment area. This could potentially result in biased abundance indices. Additional (or a redistribution of) survey stations in this area may provide a more representative index.
- The population structure of Scottish scallop stocks is not well understood. The assessment areas were defined in relation to the characteristics of the fisheries in the past and may not take account of any connectivity between scallop populations or be the most appropriate management units given modern day fishing patterns.

1 Introduction

1.1 Scottish Scallop Fisheries: An Overview

The commercial dredge fishery for the king scallop (Pecten maximus) in Scotland began in the 1930s as a seasonal (winter) fishery prosecuted by approximately 10 small inshore vessels in the Clyde. The fishery developed rapidly during the 1960s and 1970s, expanding northwards around the rest of the west coast of Scotland, Shetland and the northeast Scottish coast. It is now a year round activity with some fishing grounds up to 40 miles from the coast.

In 2015, total scallop landings into Scotland were in excess of 10,500 tonnes, which with a first-sale value of over $£ 22.5$ million made the fishery the second most important shellfish fishery in Scotland. Over 90 \% of the landings came from dredge fisheries and most of the remainder was taken by commercial divers.

The most important areas in terms of landings are the Irish Sea, West of Kintyre, the North West, North East and East Coast with over 80\% of annual Scottish landings typically taken in these areas.

The scallop dredge fleet consists of vessels ranging in size from under 10 m to over 30 m in length. The smaller vessels tend to work locally in inshore waters while the larger vessels are more nomadic and may move between fishing grounds around the coast of Scotland and the rest of the UK.

1.2 Management Framework and Regulations

Scottish scallop fisheries are not subject to EU or national TAC regulations. There are EU measures to restrict effort in addition to a variety of national regulations. Under the Western Waters effort regime (which applies to all UK waters except the North Sea), effort limits are applicable to all vessels over 15 m in length, including those fishing for scallops. The limits for UK vessels are 1,974,425 kW days for Subareas V and VI and $3,315,619 \mathrm{~kW}$ days for Sub-area VII (Council Regulation (EC) No. 1415/2004).

Minimum landing size (MLS) is specified through EU and Scottish legislation. In the Irish Sea north of $52^{\circ} 30^{\prime} \mathrm{N}$, the MLS is 110 mm , while in all other areas a MLS of 100 mm applies (Council Regulation (EC) No. 850/98). Scottish legislation implemented in mid-2017 increases the MLS to 105 mm for UK vessels in all areas around

Scotland excluding the Irish Sea and Shetland (The Regulation of Scallop Fishing (Scotland) Order 2017).

All vessels fishing commercially for scallops in Scotland are required to have a licence and no new licences are granted. The Prohibition of Fishing for Scallops (Scotland) Order 2003 introduced gear restrictions which vary according to where fishing takes place: a maximum of eight dredges per side is allowed in Scottish inshore waters (out to six nautical miles); a maximum of 10 per side in any other part of the UK territorial sea adjacent to Scotland (out to 12 nautical miles); and 14 per side in any other part of the Scottish zone (out to 200 nautical miles). The Order also prohibits the use of "French" dredges (a design incorporating water deflecting plates and rigid fixed teeth) in Scottish inshore waters. The Regulation of Scallop Fishing (Scotland) Order 2017 now restricts vessels within 12 nautical miles to a bar length that can carry up to eight dredges, although vessels wishing to continue to tow 10 per side in the 6-12 mile zone may do so if they agree to have a remote electronic monitoring (REM) system installed. In addition, a number of areas around Scotland are subject to seasonal (e.g. Luce Bay) or other temporal closures (e.g. weekend ban in the Clyde) and there are also a number of marine protected areas (MPA) in which dredge fishing is banned (e.g. South Arran MPA, Wester Ross MPA) (Scottish Government, 2016).

Shellfish fisheries (including the dredge fishery for scallops) around Shetland are managed under a Regulating Order (The Shetland Islands Regulated Fishery (Scotland) Order 1999) by the Shetland Shellfish Management Organisation (SSMO). Scallop vessels at Shetland are limited to a maximum of ten dredges in total and to fishing within the hours of 0600 to 2100. As a condition of the licences issued by the SSMO, fishermen are required to provide detailed records of landings and fishing effort (Leslie et al., 2009).

The Scottish itinerant fleet of large dredge vessels regularly fish in the Irish Sea in the waters around the Isle of Man where their fishing activity is regulated by local (Isle of Man) legislation (Sea Fisheries (Scallop Fishing) Bye-Laws 1999 and 2010 and Sea Fishing Licensing Regulations 2015). This includes various gear restrictions and curfews (dependent on zone) and a series of permanent and temporary closed areas.

2 Data Collection and Methods

2.1 Assessment Areas

For the purposes of Marine Scotland Science's (MSS) stock assessments, the scallop grounds around Scotland are divided into assessment areas (previously known as 'Management areas') which are defined on the basis of ICES (International Council for the Exploration of the Sea) statistical rectangles (Figure 2.1.1 and Table 2.1.1). As in previous assessments, rectangle 40E4 is divided into two data components, one from the east side of the Mull of Kintyre and one from the west side. This allows for a clearer distinction between the West of Kintyre and Clyde scallop stocks. Note that the partition of landings into the two components relies on the accurate recording of the 'zone variable' by Marine Scotland (MS) fishery officers in the Fisheries Information Network (FIN) database.

2.2 Fishery Data

The stock assessments use various fishery data which are described below.

2.2.1 Landings Data

The assessments make use of official landings data for both dredge and dive caught scallops. Scottish landings data (landings by UK vessels into Scotland) are collated by Marine Scotland Compliance from sales notes and EU logbooks, and held in the Fisheries Information Network (FIN) database and in MSS' Fisheries Management Database (FMD). Recent landings data (2011-2015) for scallops caught in Scottish assessment areas but landed into ports in the Isle of Man and the rest of the UK (excluding Scotland) were provided by the Marine Scotland Marine Analytic Unit from the iFISH database. Irish vessels occasionally fish in the west of Scotland scallop assessment areas. Historical landings (typically accounting for < 0.5% of total landings from this area) have been provided by the Irish Marine Institute and included in the assessments.

Total landings from each assessment area, by all fishing methods and by all nations, are used in the stock assessments.

2.2.2 Catch-at-age Data

Scallop landings are sampled as part of an integrated MSS market sampling programme ${ }^{1}$. Sampling began in the early 1970s, however, it is only since 1982 that sufficient samples have been available to construct reliable catch-at-age data.

Most scallops in Scotland are sold privately, rather than by auction, and are sampled at the processing factories. For each trip sampled, one bag of scallops is selected at random and the lengths of all scallops are recorded to the 0.5 cm below. A subsample of the scallops are aged (using the rings on their shells) with individuals age 10 and above recorded in a '10+' age category. Processors handle both dive and dredge caught scallops although dive caught samples are often obtained directly from the dive vessel at the time of landing.

On a quarterly basis, sampled numbers-at-age data for dredge and dive caught scallops are raised to total dredge and dive landings, respectively. These data are summed across quarters and fishing method to provide annual catch-at-age (composition) data for Scottish landings. These data are then raised to total annual landings (all nations) to provide input for the stock assessment. Raising factors for the sampled data are determined using a length-total weight relationship with parameters fixed across stocks and quarters (see Section 2.3).

2.2.3 Discards

Landings (totals and sampled age-composition) are assumed to be representative of catches and no discard sampling takes place. Results of survival experiments (Anon, 1995) suggest that mortality of discarded scallops is relatively low; zero discard mortality is assumed in the stock assessments.

[^0]
2.3 Biological Data

2.3.1 Length-weight Relationships

A length-total weight (where weight is shell, gonad and muscle weight) relationship is used to calculate mean weights at age in the sampled data which are then used to raise sampled data to total landings. The parameters of the length-weight relationship (Weight $(\mathrm{g})=a \times$ Length $(\mathrm{mm})^{\mathrm{b}}$) are fixed across stocks and over time and are as follows:

	A	B	Source
Total (annual)	0.001142	2.513	Cook et al. (1990)

The mean weight at age estimates are also used in the stock assessments to convert the outputs (which are in terms of numbers) into total weights. When insufficient data were available (for example due to missing age classes in particular years), an average of the weight at age over the previous three years was used as a fill in.
The use of total live weight in the stock assessment results differs to the approach taken in earlier stock assessments (Dobby, et al., 2012) in which output was provided in terms of muscle weight. The change has been made so that the stock assessment outputs are presented in the same metric as the reported landings (i.e. live weight).

2.3.2 Natural Mortality

Natural mortality is not precisely known but in common with other fish and shellfish stocks of similar longevity (up to 20 years) it is assumed to be $0.15 \mathrm{yr}^{-1}$ for all ages and areas (Cook et al., 1990).

2.3.3 Maturity

Scallops first spawn in the autumn of their second year and 100\% maturity is therefore assumed for age two onwards.

2.4 Research Vessel Surveys

Dredge surveys of the major scallop grounds around Scotland have been carried out by MSS since the mid-1990s (partial surveys of the west coast began in the late 1980s). There are three surveys a year (typically between January and June) which, collectively, cover the grounds of the west of Scotland, the North Sea (Scottish coast) and Shetland. The surveys have fixed stations. The station locations were determined with reference to sediment type, using British Geological Survey charts to locate sediments suitable for scallops and knowledge of the scallop fishing grounds contributed by skippers fishing at the time when the surveys first took place. The gear set-up consists of one array of standard commercial spring-loaded Newhaven type dredges (2.5 ' wide, 9 tooth bar, with 80 mm internal diameter belly rings, Type A), and another array of smaller configuration sampling dredges with 11 teeth and smaller diameter belly rings similar to commercial gear for queen scallops Aequipecten opercularis (2.5 ' wide, 11 tooth bar, with 60 mm internal diameter belly rings, Type B).

At each station the dredges are towed at a speed of about 2.5 knots for approximately 30 minutes and all scallops caught are aged and measured (length to the 0.5 cm below). Over the years, different survey dredge widths have been used. Catch rates are, therefore, standardised for both fishing time and dredge width and are presented as numbers caught per hour per metre dredge width ($\mathrm{N} \mathrm{hr}^{-1} \mathrm{~m}^{-1}$). Indices for each assessment area are calculated by aggregating total catch at age numbers from both dredge types over all hauls and dividing by total duration (and dredge width).

2.5 Assessment

As in the previous round of Scottish scallop assessments (Dobby et al., 2012) analytic stock assessments were conducted using the Time Series Analysis (TSA) approach as it is was deemed to have a number of advantages over typical Virtual Population Analysis (VPA) type approaches including:

- Allows fishing mortality estimates to evolve over time in a constrained manner.
- Provides precision estimates of estimated parameters (numbers at age and fishing mortality at age).
- Can cope with the omission of catch or survey data if data are of poor quality or missing.
- Allows survey catchability to evolve over time.

The TSA assessment method is not a conventional time series model in that it does not include autoregressive or moving average terms. It is a state space model with the state of the stock in a particular year described by a vector of stock numbers at age and fishing mortality numbers at age (the 'state vector'). The 'state equations' define how this vector changes over time i.e. how the numbers at age in a particular year relate to the numbers at age and fishing mortality at age in the previous year. This vector is related to the data or observations (typically catch-at-age data and survey data) through 'observation equations'. The unscented Kalman filter, which is a development of the standard Kalman filter for use in highly non-linear models, is used to estimate the state variables. The method was derived by Gudmundsson (1994) and further developed by Fryer (2002) for use in the assessment of North Sea and West of Scotland demersal fish stocks (ICES, 2011).

The model is initialised and run through a series of R scripts although actual parameter estimation is carried out by a Fortran programme which is automatically called from within R.

3 Results and Discussion by Area

3.1 Regional and Temporal Trends

Since the mid-1990s, total Scottish (UK vessels into Scotland) scallop landings have fluctuated between eight and 11 thousand tonnes. The majority of these are dredge caught, dive caught scallops typically making up less than 5% of the total. Temporal trends in landings vary considerably between assessment areas and are shown in Table 3.1.1 (dredge) and Table 3.1.2 (dive) for 1982 to 2015 and over a 45 year period in Figure 3.1.1 (total landings by all vessels into all countries). In some areas, particularly to the west of Scotland, there have been substantial fisheries throughout this period of time whilst in other areas such as the East Coast, North East and Orkney, fisheries developed relatively recently. The Irish Sea, Orkney and Shetland fisheries have shown a general increase in landings over the 45 year period illustrated, whilst the landings from some of the other assessment areas have shown declines. In particular, both the North East and North West areas have, in the past, had periods of very high landings ($\sim 3,500 \mathrm{t}$) but have shown much lower landings in recent years.

The spatial distribution of landings (vessels of all nationalities) into Scotland in 2015 is shown in Figures 3.1.2 (dredge caught) and 3.1.3 (dive caught). The grounds of greatest importance to the Scottish dredge fishery in 2015 were the northeast coast of Scotland, Shetland and the statistical rectangles around the Inner Hebrides. Note that a large proportion of landings from the Irish Sea were landed into ports elsewhere in the British Isles (not Scotland) and are hence not shown in this figure. Total landings into all countries are given in Table 3.1.3. In contrast to the dredge fisheries, the main dive fisheries in 2015, (Figure 3.1.3 and Table 3.1.2) were located in the coastal waters of the west of Scotland and at Orkney, where diving accounted for over 30\% of the landings in 2015.

3.2 Clyde

3.2.1 Description of the Fishery

Landings from this area have fluctuated markedly, declining to under 20 tonnes in 1990 and increasing since then to average over 600 tonnes per year since 2011 (Figure 3.1.1). The majority of landings come from the eastern half of statistical rectangle 40E4. Note that the partitioning of landings from statistical rectangle 40E4 into east (Clyde) and west (West of Kintyre) components relies on the accurate recording of the 'zone variable' by MS fishery officers in the Fisheries Information Network (FIN) database. The proportion being recorded as coming from the Clyde has increased significantly in recent years. It is not clear whether this reflects a change in the distribution of the fishery or whether there have been changes in recording practices. Landings from the Clyde may therefore be overestimated in recent years.

The local fleet comprises of a few large vessels which fish out of Campbeltown plus a number of small vessels (< 12 m) fishing out of Girvan, Stranraer and Tarbert. Up to six vessels from the Isle of Man fleet fish in the Clyde at various times of the year.

3.2.2 Sampling Levels and Age Compositions

Since 2010, landings sampling levels in the Clyde assessment area have been much improved. In 2015, almost 3,000 scallops were measured from 14 fishing trips. (Table 3.2.1).

Catch-at-age Data

Raised catch-at-age data for the Clyde area are available in FMD from 1982 onwards. Given the low historical sampling levels, much of these data are not deemed of sufficient quality for further analysis and only data from the most recent five years are presented here (Table 3.2.2).

3.2.3 Assessment

Due to the limited port sampling before 2011, the time series of age composition data is of insufficient length for stock assessment purposes. No survey data are available for the Clyde assessment area.

3.3 East Coast

3.3.1 Description of the Fishery

The scallop fishery in the East Coast assessment area developed in the 1990s. There has been marked variability in the landings throughout the time period, from 299 t in 2001 to a high of over 2,500 t landed in 2007 (Figure 3.1.1). The current East Coast scallop fleet consists of 14 vessels that fish year round, operating out of ports along the Aberdeenshire coast from Fraserburgh to Montrose. In addition, up to 15 nomadic boats join the fleet at the end of April coming from the Isle of Man, the English Channel and the Scarborough coast with vessels ranging in size from 14 to 32 m . The fishery has a seasonal trend which typically peaks in the second quarter. It is not uncommon for areas off the Firth of Forth and Bell Rock to be intensively fished.

3.3.2 Sampling Levels and Age Compositions

Sampling of the landings has been carried out since the beginning of the fishery (Table 3.2.1). A period of low sampling levels is apparent between 2001 and 2003 and is likely to be due to a lack of sampling opportunities given the low level of landings at this time. As landings increased in the mid-2000s, sampled numbers and trips also increased, but have been variable since then with only six trips sampled in 2014. In 2015, sampling levels were better with 12 trips and 2,636 individuals measured.

Catch-at-age Data

Catch-at-age data for the East Coast are shown in Figure 3.3.1 and Table 3.3.1 for 1991 onwards. No specific age classes consistently dominate the landings and there are no apparent trends in age composition. The high landings in 1994-1995 consist mainly of young (ages 4-6) individuals from the 1989-1991 year classes, which dominate the landings in 1999 at older ages ($8-10+$). The catch-at-age data show consistently lower numbers of individuals at younger ages (two and three year olds) indicating only partial recruitment to the fishery up to age five.

3.3.3 Biological Data

The mean weights at age are shown in Figure 3.3.2 and Table 3.3.2. There are no apparent systematic temporal trends although inter-annual fluctuations in mean weight at age are similar across age classes.

3.3.4 Exploratory Analysis

Catch Data

Mean standardised catch-at-age data by proportion are shown in Figure 3.3 .3 with dark bubbles illustrating above average values. The data provide some indications of relative year class strength, with the 1989 and 1999 year classes (recruiting at age three in 1992 and 2002) appearing well above average and those of the mid 1990s being particularly low. These strong year classes are well tracked at subsequent ages. In recent years, the data appear to be more noisy and it is difficult to identify clear year class signals.

Survey Data

Details of the surveys which have been carried out in the East Coast assessment area are given in Table 3.3.3. A partial North Sea scallop survey was conducted in 1993, with full coverage of the East Coast assessment area beginning in 1994. However, the survey was not conducted consistently by the same vessel (RV Clupea) until 1997 onwards with a change to RV Alba na Mara in 2008. No comparative tows were conducted to compare catch rates between vessels. Previous scallop stock assessments have suggested that despite standardisation of catch rates (to account for differences in the number of dredges towed and dredge width), survey vessel may have a significant impact on catchability. Therefore, in this assessment, the survey data are treated as two separate time series. The Clupea dredge survey runs from 1998 to 2007 and the Alba survey from 2008 onwards (Table 3.3.4). Since 2001, the survey has been relatively consistent in terms of timing (June/July). However, prior to this the survey was conducted towards the end of the year (September-December) and in one instance in the following calendar year (1998 survey conducted in January/February 1999). No adjustments are made to the data to account for these differences in timing, but using a model which allows for transient changes in survey catchability enables the assessment to account for the potential impact of such changes.

The catch rates of scallops (age three and 4+ separately) at stations across the East Coast assessment area between 2013 and 2016 are shown in Figure 3.3.4. Most noticeable is the almost complete absence of age three individuals (age at recruitment in the stock assessment) in 2016. In 2015, catches of recruits were largely confined to a few hauls in a small area off the north Aberdeenshire coast. In comparison, in 2013 and 2014, age three individuals were more widely caught, particularly at the offshore stations on the east coast of Scotland. Scallops of age four and above were caught at all survey stations in the East Coast area in 2016, but catch rates were generally lower than in previous years.

Mean standardised survey catch rates at age are shown in Figure 3.3.5 for the two surveys separately (Clupea and Alba). Following a number of weak year classes during the mid-1990s,(apparent as significantly below average catches of older individuals in the early 2000s), the Clupea survey suggests good recruitment in 2001 and 2002 and tracks these cohorts with above average catch rates across a range of age classes. The early part of the Alba survey also picks out the 2003 and 2004 year classes (recruitment in 2006 and 2007) as strong. In more recent years, year class strength signals in the survey are less clear.

A comparison of commercial catch-at-age data and survey indices is shown in Figure 3.3.6 (mean standardised at age over the common time period for each survey). The indices from the Clupea survey are very consistent with the catch-at-age data, particularly from ages five to eight. The two data sources provide very similar estimates of relative year class strength over a number of years. The Alba survey is also relatively consistent with the commercial catch-at-age data in terms of trends, although actual estimates of relative year class strength differ to those from the catch data.

Table 3.3.4 shows the average catch rates by age class and year. Catch rates of ages two and three tend to be lower than other age classes (particularly for the Alba), indicating a lower survey catchability.

3.3.5 Final Assessment

TSA

The exploratory catch and survey data analysis indicates highly variable catch rates of age two individuals. In addition, the catch rates of the 10+ age group in the survey are very noisy. These data are, therefore, excluded from the final assessment.

Recruitment occurs at age three and is implemented as a random walk (with parameters to be estimated) as there is no apparent relationship between SSB and recruitment.

Both the Clupea and Alba survey time series are included in the assessment. The coefficient of variation (cv) multiplier on each survey is adjusted to reflect the varying number of hauls. This allows for survey indices from years in which a greater number of survey hauls were conducted to be given more weighting in the assessment. Based on inspection of preliminary assessment residual plots, greater variability was allowed in particular age classes in the survey data and in both fishing mortality and recruitment in a number of years (by using a cv multiplier above one). The final TSA input settings are given in Table 3.3.5.

Outputs from the TSA assessment are shown in Figure 3.3.7 and estimated parameter values are given in Table 3.3.6. Standardised residuals from the assessment model are shown in Figures 3.3.8 (landings) and 3.3.9 and 3.3.10 (surveys). The landings residuals are well distributed and do not suggest the model is predicting landings with systematic differences to the observations. There is some evidence of a trend in the residuals in the Clupea survey at ages five and six. However, the values are low, and alternative assessment model runs which allowed for a persistent trend in survey catchability estimated the trend to be not significantly different to zero. The best model was therefore deemed to be one which only accounted for transient changes in survey catchability.

There is no clear relationship between stock size (SSB) and recruitment to the fishery (at age three) for this stock (Figure 3.3.11). The recruitment time series with underlying estimated random walk is shown in Figure 3.3.12.

Retrospective Analysis

The retrospective plots shown in Figure 3.3.13 indicate that the assessment tends to underestimate the recruitment, and consequently the SSB, in the final year (i.e. that estimates are revised upwards with each additional year's data). This appears to be due to a revision in the recruitment random walk model with the addition of each subsequent year of data. Mohn's ρ (average under/over estimation) is often used as a measure of assessment performance. For SSB, this is calculated as -0.25 (averaged over the last five assessments) i.e. 25 \% underestimation of SSB. There is also some associated over-estimation of fishing mortality, although this is not apparent in all years, and with the exception of the 2013 model run, final year estimates are all within the confidence intervals of the estimates from the final model run.

Stock Summary

Estimates (and standard errors) of age structured population abundance and fishing mortality are presented in Tables 3.3.7-3.3.10. The final estimates are smoothed across years which explains the differences between the estimates of fishing mortality at age in the first year given here and the parameter estimates in Table 3.3.6.

The state of the stock is summarised in Figure 3.3.7 and Table 3.3.11.

The final estimates for the stock are:
F in 2015 (average over ages $4-6$) $=0.225$
SSB in 2016 (total over ages $3-10+$) $=9728$ t

There are currently no reference points for this stock.

Following a number of very strong year classes during the early and mid-2000s, more moderate recruitment is estimated for the late 2000s. Recruitment in 2015 is estimated to be below average and in 2016 to be one of the lowest of the time series, although this latter estimate is based only on a single survey data point and as a result is very uncertain. The SSB increased during the 2000s, but has been declining since 2013. Mean $F(4-6)$ showed a significant decline between 2004 and 2011, but since then is estimated to have doubled.

3.3.6 Comparison with Previous Assessments

This is the first time that an analytical stock assessment has been presented for the East Coast assessment area. The last Scottish scallop assessment report was published in 2012 (Dobby, et al., 2012) and presented an empirical assessment based on Scottish dredge survey data for this stock. A comparison between the latest assessment and that given in the 2012 report is presented in Figure 3.3.14. Despite the differences in approach, the historical trends show good agreement, with the main difference being that the results from the latest assessment are much smoother than the indices from 2012 (as would be expected with the application of a population model).

3.3.7 Quality of the Assessment

Landings Data

Fishers are required to provide information about quantities landed and fishing location by ICES rectangle on either EU logbooks or Fish 1 forms (under 10 m vessels). The implementation of 'the registration of buyers and sellers' legislation in the UK in 2006 requires details of the landed catch also to be recorded at the point of first sale and sales notes are cross checked against vessels' landings declarations. This procedure is thought to have improved the accuracy of reported landings since then.

Age Composition

Scallop market sampling levels (number of trips and number of scallops sampled) for the East Coast area have been highly variable. Recent sampling levels are considered adequate and, therefore, the lack of sampling (and resulting lack of catch-at-age data) in 2001 is unlikely to have a significant impact on the assessment of stock status.

Survey Data

Typically between 40 and 50 stations are sampled each year on the survey of the East Coast assessment area. The survey shows reasonable coverage of the scallop fishing grounds as inferred from VMS effort data associated with scallop landings (Figure 3.3.15). However, survey station density is relatively low compared to, for example, parts of the Moray Firth coast in the North East assessment area. This is particularly apparent in the offshore areas between Fife and Montrose. Furthermore,
in 2015, there also appears to be significant scallop fishery effort along the coast of north Berwickshire, an area which is not covered by the survey, although this is less apparent in earlier VMS data.

The survey utilises a standard commercial dredge with large belly rings and a smaller laboratory dredge with small belly rings. Younger age classes (two and three year olds) have lower survey catchability because they are smaller in length and width and are able to pass through the belly rings of both types of dredges. This lower survey catchability results in uncertain estimates of recruitment in the final year.

Retrospective Bias

The assessment shows some tendency towards consistently biased estimates of SSB and F. However, the direction of bias (underestimating SSB, overestimating F) leads to a conservative stock assessment and any resulting advice is therefore more likely to be precautionary.

3.4 Irish Sea

3.4.1 Description of the Fishery

The Irish Sea scallop assessment area covers the waters to the south west of Scotland from latitude $55^{\circ} \mathrm{N}$ to $53^{\circ} \mathrm{N}$ and is one of the most important scallop fishing areas around the UK. The fishery began in the 1970s and landings into Scotland steadily increased to a peak of $1,461 \mathrm{t}$ in 2010. Landings into Scotland have decreased since then, but those from the Irish Sea assessment area, have increased with the 2016 landings ($5,480 \mathrm{t}$) being the highest in the time series. The majority are landed into ports outside Scotland with a large proportion taken by non-Scottish vessels. At various times of the year approximately 18 large (14-24 m in length) nomadic Scottish vessels fish the Irish Sea particularly in Luce Bay (seasonally), the scallop grounds off Burrow Head and around the Isle of Man. These vessels normally land at Kirkudbright, Stranraer or the Isle of Whithorn, but depending on fishing locations, they may also land into Peel or Douglas in the Isle of Man.

3.4.2 Sampling Levels and Age Compositions

MSS samples vessel landings at Kirkcudbright (Table 3.2.1) but not on a regular basis. Vessels fishing in the Irish Sea land most of their catch at ports outside Scotland which makes obtaining representative fishery data particularly difficult.

Catch-at-age Data

Catch-at-age data raised to Scottish landings for the Irish Sea area are available in FMD for the mid-1980s onwards. However, given that these data are based on a small number of samples taken only at Scottish ports, they are not deemed of sufficient quality for further analysis and are not presented here.

3.4.3 Assessment

The age composition data are insufficient for an analytical assessment, and no surveys have been undertaken in this area by MSS. Since 2007, however, Bangor University has undertaken a programme of research and monitoring of species of fisheries and conservation importance (including scallops) in the waters surrounding the Isle of Man. The programme includes dredge surveys of the scallop fishing grounds around the Isle of Man (Murray et al., 2009). However, the results of recent surveys for king scallops are not available at the time of writing.

3.5 North East

3.5.1 Description of the Fishery

The North East scallop fishery developed in the 1980s and landings have fluctuated throughout the time series with a peak of $3,501 \mathrm{t}$ in 1996 but falling to 810 t in 2011 (Figure 3.1.1). Landings in the last three years have been around 2,000 t (above the long term average). The historical fluctuations which are observed in the fishery in this area can partly be explained by effort displacement from areas closed to scallop fishing due to ASP/PSP toxins. Up to 29 large nomadic vessels (over 12 m in length) fish the scallop grounds in the inner and outer Moray Firth, landing into Wick, Buckie and Fraserburgh. At certain times of the year, some of these vessels also fish grounds further north, to the east of the northern Orkney Isles. The main fishery is usually between April and September.

3.5.2 Sampling Levels and Age Compositions

Sampling levels for the North East area are shown in Table 3.2.1. Previously, landings from this area were consistently well sampled, however, in the last 10 years sampling levels have become more variable, possibly a reflection of the variable nature of the fishery.

Catch-at-age Data

Catch-at-age data for the North East are available from 1984 to 2015. The data are shown in Table 3.5.1 and Figure 3.5.1. In the early part of the time series, catches were dominated by individuals in the 10+ age category, whereas more recently, the catches consist largely of age four to seven year olds (with the exception of 2013 where there are a high proportion of $8-10+$ in the landings). The catch-at-age data show consistently lower numbers of individuals at younger ages indicating only partial recruitment to the fishery up to age five.

3.5.3 Biological Data

The mean weights at age are shown in Figure 3.5.2 and Table 3.5.2. The historical mean weights at age show variability, but no systematic trend until the mid-2000s when mean weights of older individuals increased up to 2008 and then declined to more 'normal' values. This coincides with the period when sampling levels became more variable and when ages nine and ten plus, in particular, were less apparent in the sampled landings and so may be associated with sampling variability rather than an actual increase in mean size at the older ages. Inter-annual fluctuations in mean weight at age are similar across age classes.

3.5.4 Exploratory Analyses

Catch Data

Mean standardised commercial catch-at-age data by proportion are shown in Figure 3.5.3. Following a period of apparently poor recruitment in the late 1980s, the commercial catch-at-age data suggest above average catches for the 1988 to 1991 cohorts across a range of ages. Data from the more recent period also suggests some years with stronger recruitment, but these signals are less clear and not apparent beyond age seven.

Survey Data

Details of the surveys which have been carried out in the North East assessment area are given in Table 3.3.3. A partial North Sea scallop survey was conducted in 1993, with full coverage of the North East assessment area beginning in 1994. However, the survey was not conducted consistently by the same vessel (RV Clupea) until 1997 onwards with a change to RV Alba na Mara in 2008. No comparative tows have been conducted to compare catch rates between vessels and previous scallop stock assessments have suggested that despite standardisation of catch rates (to account for differences in the number of dredges worked and dredge width), survey vessel may have a significant impact on catchability. Therefore, in this assessment, the survey data are treated as two separate series. The Clupea dredge survey runs from 1997 to 2007 and the Alba survey from 2008 onwards (Table 3.5.3). Since 2001, the survey has been relatively consistent in terms of timing (June/July). However, prior to this the survey was conducted towards the end of the year (September-December), and in one instance in the following calendar year (1998 survey was conducted in January/February 1999). No adjustments are made to the data to account for these differences in timing, but using a model which allows for transient changes in survey catchability enables the assessment to account for the potential impact of such changes.

The catch rates of scallops (age three and 4+ separately) at stations across the North East area between 2013 and 2016 are shown in Figure 3.3.4. In 2013 and 2014 high catch rates of age three individuals (age at recruitment) were observed at many of the stations across the west and north of the Moray Firth. In 2015 and 2016, there is almost a complete absence of age three individuals in the survey with the exception of a very large catch in 2015 off the northeast Aberdeenshire coast. Scallops of age four and above were caught at all survey stations in the North East area in 2016, but survey catch rates were generally lower than in previous years.

Mean standardised survey catch rates at age are shown in Figure 3.5.4 for the two surveys. The Clupea survey estimates the cohorts from the early 1990s to be of above average size and tracks these consistently at older ages in the late 1990s. This survey also estimates the 1994 to 1996 (recruitment in 1997 to 1999) cohorts to be weak consistently across most age classes. The Alba survey data appear much noisier and poorer at tracking cohort strength. With the exception of the 2009 and 2010 year classes from age four onwards, cohort strength estimates from this survey are inconsistent.

A comparison of commercial catch-at-age data and survey indices is shown in Figure 3.5.5 (mean standardised at age over the common time period for each survey). The indices from the Clupea survey are very consistent with the catch-at-age data particularly from ages four to eight. The two data sources provide almost identical estimates of relative year class strength over a number of years and age classes. The Alba survey indices have the same general trend as the catch at age data, but the estimates of relative year class strength differ.

Table 3.5.3 shows the average survey catch rates by age class and year. Catch rates of ages two and three are typically much lower than other age classes (particularly in the Alba survey) indicating significantly lower survey catchability for these age classes.

3.5.5 Final Assessment

TSA

Exploratory data analyses shows low and highly variable catch rates of age two individuals in both the commercial catch and survey data. In addition, the catch rates of the $10+$ age group in the survey are considered quite noisy. These data are, therefore, excluded from the final assessment.

Recruitment occurs at age three and is implemented as a random walk (with parameters to be estimated) as there is no apparent relationship between SSB and recruitment.

Both the Clupea and Alba survey time series are included in the assessment. The cv multiplier on each survey is adjusted to reflect the varying number of hauls. This allows for survey indices from years in which a greater number of survey hauls were conducted to be given more weighting in the assessment. Based on inspection of preliminary assessment diagnostic plots, greater variability was allowed in particular age classes in the survey data and in both fishing mortality and recruitment in a number of years (by using a cv multiplier above one). The final TSA settings are given in Table 3.5.4.

Outputs from the TSA assessment are shown in Figure 3.5.6 and estimated parameter values are given in Table 3.5.5. Standardised residuals from the assessment model are shown in Figures 3.5.7 (landings) and 3.5.8 (Clupea survey) and 3.5.9 (Alba survey). Both catch and survey residuals are well distributed about
zero and generally small. There is no evidence to indicate any major issues with fitting to the observed data.

There is no clear relationship between stock size (SSB) and recruitment at age three for this stock, although examination of the data suggests that the period of highest recruitment (1989-91 year classes) is associated with low stock size (Figure 3.5.10). The recruitment time series with underlying estimated random walk is shown in Figure 3.5.11.

Retrospective Analysis

The results of the retrospective analysis are shown in Figure 3.5.12. There is some tendency for the assessment to underestimate recruitment and subsequent SSB in the final year of the assessment. Mohn's ρ (average under/over estimation) is calculated as -0.24 (averaged over the last five assessments), i.e. 24% underestimation of SSB. There is also some associated overestimation of fishing mortality which appears to be significant in the assessment run with final year 2013. Other final year estimates of fishing mortality fall within the confidence bounds of the estimates from the final (2016) model run.

Stock Summary

Estimates (and standard errors) of age-structured population abundance and fishing mortality are presented in Tables 3.5.6-3.5.9. The state of the stock is summarised in Figure 3.5.6 and Table 3.5.10. The final estimates for the stock are:

F in 2015 (average over ages 4-6) $=0.132$
SSB in 2016 (total over ages 3-10+) $=9,275 \mathrm{t}$

There are currently no reference points for this stock.

Fishing mortality on this stock is estimated with considerable uncertainty throughout the time period, but the point estimates show a rapid increase during the late 1980s and early 1990s. In the last ten years, F has fluctuated without significant trend. SSB has declined sharply in recent years after a period of relatively stable/increasing SSB. Recruitment has declined over the last five years and current estimates for 2015 and 2016 are particularly low (although the latter is based only on a single survey data point and is therefore quite uncertain).

3.5.6 Comparison with Previous Assessments

The last Scottish scallop assessment report was published in 2012 (Dobby et al., 2012). A comparison between the latest assessment and that given in the 2012 report is presented in Figure 3.5.13. The two assessments show reasonable consistency. However, the latest assessment suggests a greater decline in F than the 2012 assessment over the period 2005 to 2010 and a somewhat greater increase in SSB since the start of the time series. Although the assessments use the same approach (TSA), they differ in that in the latest assessment it was considered more appropriate to treat the survey data as two separate time series while in the earlier assessment the data were combined as a single index.

3.5.7 Quality of the Assessment

Landings Data

Fishers are required to provide information about quantities landed and fishing location by ICES rectangle on either EU logbooks or Fish 1 forms (under 10 m vessels). The implementation of 'the registration of buyers and sellers' legislation in the UK in 2006 requires details of the landed catch also to be recorded at the point of first sale and sales notes are cross checked against vessels landings declarations. This procedure is thought to have improved the accuracy of reported landings data since then.

Age Composition

The scallop market sampling levels for the North East were poor, in terms of both total number of trips and seasonal coverage of the fishery, at the start of the time series and again more recently. Catch-at-age composition data for these periods are therefore likely to be less reliable, resulting in greater uncertainty in estimated stock status.

Survey Data

The scallop grounds of the North East assessment area (inferred from VMS data, Figure 3.3.15) are well covered by the dredge survey. However, there appears to be significant spatial variability in the intensity of survey sampling, with some grounds such as those off the north Moray coast and to the east of Orkney much more intensely sampled than the large central offshore fishing grounds (possibly a weather related issue).

The survey utilises a standard commercial dredge with large belly rings and a smaller laboratory dredge with small belly rings. Younger age classes (two and three year olds) have lower survey catchability because they are smaller in length and width and are able to pass through the belly rings of the dredge which results in uncertain estimates of recruitment in the final year.

Retrospective Bias

The assessment shows some tendency towards consistently biased estimates of SSB and F. However, the direction of bias (underestimating SSB, overestimating F) leads to a conservative stock assessment and any resulting advice is therefore likely to be more precautionary.

3.6 North West

3.6.1 Description of the Fishery

The North West assessment area covers much of the west coast of Scotland and the waters around the Hebrides. There is a long history of scallop fishing in this area (Figure 3.1.1). The main fishing grounds are around the Inner Hebrides and South Uist. The fishery operates all year round. In 2015, landings were $2,236 \mathrm{t}, 50 \%$ of the peak of $4,500 t$ taken from the area in 2002. The fishery is prosecuted by a fleet of around 10 over-10 m vessels. Most of these vessels operate out of ports in the Outer Hebrides, landing into Grimsay, Scalpay and Stornoway. There are also local dredge vessels operating out of Mallaig and Tobermory which fish to the north of Mull. Additionally, up to six nomadic boats (from Oban and the Isle of Man) sometimes join the fishery at various times of the year. There is also a small but significant dive fishery in which approximately ten vessels regularly participate. The dive fishery operates largely in the sheltered inshore waters around Ardnamurchan, Kyle, Ullapool, Uist and Barra and in 2015 accounted for just over 12\% of total scallop landings in the North West area.

3.6.2 Sampling Levels and Age Compositions

The North West area has generally been well sampled since the early 1990s. Sampling levels are shown in Table 3.2.1. In 2015, 7,158 individual scallops were measured from 42 sampled vessels.

Catch-at-age Data

Catch-at-age data for the North West from 1982 to 2015 are shown in Figure 3.6.1 and Table 3.6.1. In the early part of the time series, a significant proportion of catches were of individuals in the 10+ age category, whereas more recently, the catches consist largely of four, five and six year old individuals.

3.6.3 Biological Data

The mean weights at age are shown in Figure 3.6.2 and Table 3.6.2. The mean weights of individuals aged five to ten shows a gradual increase from the late 1980s to mid-1990s with similar inter-annual variations across age classes. Mean weights for those age categories which are less important in the catch show greater fluctuations. In 2008, mean weights show a sudden increase across a number of ages (coupled with an unusual age structure, Section 3.6.5) which could be due to either unrepresentative landings being sampled in this year or potentially to errors during the sampling process.

3.6.4 Exploratory Analysis

Catch Data

Mean standardised catch-at-age data by proportion are shown in Figure 3.6.3 with dark bubbles illustrating above average values. There is some evidence that data track relative year class strength during the 1990s and early 2000s. However, the more recent data appear very noisy and the age composition in 2008 in particular shows a very strange pattern with unexpectedly low proportion of older ages and a high proportion of age five and six.

Survey Data

Details of west coast scallop surveys which cover the North West assessment area are given in Table 3.6.3. No comparative tows have been conducted to compare catch rates between vessels and previous scallop stock assessments have suggested that despite standardisation of catch rates (to account for differences in the number of dredges worked by each vessel), survey vessel may have a significant impact on catchability. Therefore, in this assessment, the survey data are treated as three separate indices. The Aora dredge survey runs from 1993 to 2002, the Aora II from 2003 to 2007 and the Alba from 2008 to 2016 (Table 3.6.4). Within each of the
three survey indices, the seasonal timing of the survey has been relatively consistent over time.

The catch rates of scallops (age three and 4+ separately) at stations across the North West area between 2013 and 2016 are shown in Figure 3.6.4. In all years there appear to be a significant number of tows where no age three (recruitment age) individuals were caught. However, a general increase in the catch rates of recruits in 2015 and 2016 compared to 2014 is also evident. The catch rates of age 4+ are much higher than those of age three individuals with the highest catches typically occurring in the area between northern Skye and the Outer Hebrides and off southeast Skye.

Mean standardised survey catch rates at age are shown in Figure 3.6.5. There is clear tracking of strong year classes (recruitment in 1992, 2000) in the Aora and Aora II survey series. The early part of the Alba survey also identifies strong (and weak) year classes consistently across a wide range of ages and survey years, but in recent years, the signals are less clear.

A comparison of commercial catch-at-age data and survey indices is shown in Figure 3.6.6 (mean standardised at age over the common time period for each survey). The indices from the Aora and Aora II surveys are most consistent with the catch data at the younger ages while the Alba survey shows more consistency for age five and above.

Table 3.6.4 shows the average catch rates by age class and year. Catch rates of ages two and three are consistently lower than other age classes (particularly for the Alba survey) indicating a significantly lower survey catchability.

3.6.5 Final Assessment

TSA

The exploratory catch and survey data analysis indicates highly variable catch rates of age two individuals. In addition, the catch rates of the 10+ age group in the survey are very noisy. These data are, therefore, excluded from the final assessment.

Recruitment occurs at age three and is implemented as a random walk (with parameters to be estimated) as there is no apparent relationship between SSB and recruitment.

All three survey time series are included in the assessment. Based on inspection of preliminary assessment residual plots, the first two years of the Aora survey (1993 and 1994) were excluded due to apparently much higher survey catchability than the remainder of the time series. The cv multiplier on each survey is adjusted to reflect the varying number of hauls. This allows for survey indices from years in which a greater number of survey hauls were conducted to be given more weighting in the assessment. Initial residual plots also indicate greater variability at particular age classes in the survey data and in both fishing mortality and recruitment in a number of years and the cv multiplier was increased above one in such cases. The rather strange age composition apparent in the 2008 catch data (Figure 3.6.3) appeared to be quite influential in the fitting procedure and hence the decision was made to completely exclude the 2008 catch data. The final TSA settings are given in Table 3.6.5.

Outputs from the TSA assessment are shown in Figure 3.6.7 and estimated parameters given in Table 3.6.6. Standardised residuals from the assessment model are shown in Figures 3.6.8 (landings) and 3.6.9 to 3.6.9.11 (surveys). Both catch and survey residuals are well distributed about zero and generally small. There is no evidence to indicate any major issues with fitting to the observed data.

There is no clear relationship between SSB and recruitment to the fishery (at age three) for this stock (Figure 3.6.12). The recruitment time series with underlying estimated random walk is shown in Figure 3.6.13.

Retrospective Analysis

The retrospective plots are shown in Figure 3.6.14. There is little evidence to suggest systematic underestimation (or overestimation) of either SSB or F and with the exception of the model run ending in 2011, all final year estimates of both SSB and F are within the confidence intervals of the estimates from the final model run (2016). Mohn's ρ (average under/over-estimation) is calculated as -0.08 which is not significant given the uncertainty in the model estimates.

Stock Summary

Estimates (and standard errors) of age structured population abundance and fishing mortality are presented in Tables 3.6.7-3.6.10. The final estimates are smoothed across years which results in differences between the estimates of fishing mortality at age in the first year given here and the parameter estimates in Table 3.6.6.

The state of the stock is summarised in Figure 3.6.7 and Table 3.6.11. The final estimates for the stock are:
F in 2015 (average over ages 4-6) $=0.141$
SSB in 2016 (total over ages 3-10+) $=17,581 \mathrm{t}$

There are currently no reference points for this stock.

Following a period of lower recruitment in the mid-2000s, estimated recruitment has increased and has been above the long term average since 2010. As a result of the increased recruitment and moderate landings, estimated SSB has increased steadily over this period. The resulting estimates of recent fishing mortality are fairly stable at around the long term average.

3.6.6 Comparison with Previous Assessments

The last Scottish scallop assessment report was published in 2012 (Dobby et al., 2012). A comparison between the latest assessment and that given in the 2012 report is presented in Figure 3.6.15. The two assessments show good consistency, particularly in the estimates of fishing mortality. Although the assessments use the same approach (TSA), they differ in that in the latest assessment it was considered more appropriate to treat the survey data as three separate time series while in the earlier assessment the assumption was that the data formed a single index. This is likely to account for the slightly different trends in the SSB estimates over the more recent period (since 2000).

3.6.7 Quality of the Assessment

Landings Data

Fishers are required to provide information about quantities landed and fishing location by ICES rectangle on either EU logbooks or Fish 1 forms (under 10 m vessels). The implementation of 'the registration of buyers and sellers' legislation in the UK in 2006 requires details of the landed catch also to be recorded at the point of first sale and sales notes are cross checked against vessels landings declarations. This procedure is thought to have improved the accuracy of reported landings data since then.

Age Composition

Although market sampling levels across this area have generally been good, there was a period between 2005 and 2009 where sampled numbers declined which may explain the increased variability in catch-at-age composition and mean weights observed in the late 2000s.

Survey Data

Survey stations are located in most of the major scallop grounds of the North West assessment area (inferred from VMS effort data associated with scallop landings, Figure 3.6.16). The exception to this is the area north of Skye where there are a number of offshore survey stations, but few close to the Harris and Lewis coast where there appear to be important scallop grounds.

The survey utilises a standard commercial dredge with large belly rings and a smaller laboratory dredge with small belly rings. Younger age classes (two and three year olds) have lower survey catchability because they are smaller in length and width and are able to pass through the belly rings of the dredge which results in uncertain estimates of recruitment in the final year.

Retrospective Bias

The assessment shows good consistency and little evidence of retrospective bias.
Only minor revisions are made to the estimated SSB and F when additional data are added to the stock assessment.

3.7 Orkney

3.7.1 Description of the Fishery

The Orkney scallop fishery began in the 1970s but has remained relatively small in comparison to fisheries in other assessment areas. The scallop dredge fleet in Orkney consists of three local vessels which work year round, plus an additional visiting vessel at various times of the year. The fleet land into Hoy, Kirkwall and Westray. There is also a significant dive fishery in Orkney in which 13 vessels participate. These vessels operate year round and land into Burray, Kirkwall and Stromness.

3.7.2 Sampling Levels and Age Compositions

Very limited sampling of recent landings was achieved in this fishery: a total of 3,422 scallops were measured during 2011-2015 (Table 3.2.1). There are insufficient data for assessment purposes.

Catch-at-age Data

There are some catch-at-age data raised to Scottish landings for the Orkney area available in FMD from the early 1990s. However, these are based on a very low numbers of samples and are not considered of sufficient quality for further analysis.

3.7.3 Assessment

The available catch-at-age data are insufficient for an analytical assessment and there are no surveys of this area.

3.8 Shetland

3.8.1 Description of the Fishery

The Shetland scallop fishery developed in the late 1960s and landings have shown a generally increasing trend since then. In recent years landings have been around $1,000 \mathrm{t}$, with the exception of 2013 when landings exceeded $1,400 \mathrm{t}$. Up to eight large scallops vessels (>10 m) generally target the grounds around the islands of Whalsay and Fetlar in the north east of Shetland and to a lesser extent grounds in the North of Yell Sound. A further 20 dredge vessels less than 10 m in length are licensed under the Regulating Order (RO) by the SSMO to fish at Shetland.

3.8.2 Sampling Levels and Age Compositions

The landings from the Shetland area have been consistently well sampled since the late 1980s. (Table 3.2.1). In 2015, almost 7,000 individual scallops were aged and measured from 71 sampled trips.

Catch-at-age Data

Catch-at-age data for Shetland are shown in Table 3.8.1 and Figure 3.8.1 for 1986 onwards. The catches are dominated by individuals from age classes four to seven, although the 10+ category also represents a significant component of the catch, particularly in the early years of sampling.

3.8.3 Biological Data

The mean weights at age are shown in Figure 3.8.2 and Table 3.8.2. There is a gradually increasing trend in mean weight-at-age over all ages through the 2000s which appears to have levelled off, or in fact reversed, more recently. Inter-annual fluctuations in mean weight-at-age are similar across age classes.

3.8.4 Exploratory Analysis

Catch Data

Mean standardised catch-at-age data by proportion are shown in Figure 3.8.3 with dark bubbles illustrating above average values. There is some evidence that data track relative year class strength during the 1990s and early 2000s although during this latter period relative year class strength is not tracked consistently over all ages.

Survey Data

Details of the surveys which have been carried out at Shetland are given in Table 3.8.3. Typically, the survey has been carried out in the first quarter of the year, although there have been a number of exceptions to this: the 2002 survey was carried out three months earlier than usual at the end of 2001 and the first two surveys (1995 and 1996) were carried out in May. The two early surveys were also conducted by a different vessel and are therefore excluded from the assessment. From 1998 to 2008, the survey was conducted by the RV Clupea and since then by the RV Alba na Mara. No comparative tows were conducted to compare catch rates
between vessels and previous scallop stock assessments have suggested that despite standardisation of catch rates (to account for differences in the number of dredges worked and dredge width), survey vessel may have a significant impact on catchability. Therefore, in this assessment, the survey data are treated as two separate time series.

The number of valid survey stations varies considerably, with bad weather often disrupting the survey. Typically, the stations which are missed due to bad weather are those to the south west of Shetland and in other exposed locations. It is not possible to determine whether lack of data from these areas has significantly biased the survey catch-at-age indices in these years. The survey indices derived from surveys with fewer tows are expected to be more uncertain and are given less weight in the stock assessment by adjusting their weighting according to the varying number of hauls. Note that not even a partial survey of the area could be conducted in either 2014 or 2015.

The catch rates of scallops (age three and 4+ separately) at stations across the Shetland area during 2013 and 2016 are shown in Figure 3.8.4. In the limited number of hauls conducted in 2016, there appears to be a lower proportion of tows than in 2013 where zero age three (recruitment age) individuals were caught. Over the common tows, catch rates of age 4+ are comparable between the two years.

Mean standardised survey catch rates at age are shown in Figure 3.8.5. Weak year classes from the mid-1990s (recruiting in 1997 to 1999) are tracked consistently by the Clupea survey, and towards the end of that survey, the 2003 year class is consistently estimated as above average. The Alba survey data appear quite noisy and are even more difficult to interpret given the discontinuities in the time series. In 2011 and 2012 in particular, this survey appears to suffer from year effects with the 2011 data all being above average and 2012 below average.

A comparison of commercial catch-at-age data and survey indices is shown in Figure 3.8.6 (mean standardised at age over the common time period for each survey). The indices from the Clupea survey show good consistency with the commercial catch-at-age data up to age nine. The Alba survey series is so short relative to the commercial fishery data that it is difficult to make a comparison of trends between the two series.

Table 3.8.4 shows the average catch rates by age class and year. Catch rates of ages two and three are consistently lower than other age classes (particularly for the Alba survey) indicating a significantly lower survey catchability.

3.8.5 Final Assessment

TSA

The exploratory catch and survey data analysis indicates highly variable catch rates of age two individuals. In addition, the catch rates of the 10+ age group in the survey are very noisy. These data are, therefore, excluded from the final assessment.

Recruitment occurs at age three and is implemented as a random walk (with parameters to be estimated) as there is no apparent relationship between SSB and recruitment.

Both the Clupea and Alba survey time series are included in the assessment. The coefficient of variation (cv) multiplier on each survey is adjusted to reflect the varying number of hauls. This allows for survey indices from years in which a greater number of survey hauls were conducted to be given more weighting in the assessment. Based on inspection of preliminary assessment residual plots, greater variability was allowed in particular age classes in the survey data and in fishing mortality, and recruitment in a number of years (by using a cv multiplier above one). The final TSA input settings are given in Table 3.8.5.

Outputs from the TSA assessment are shown in Figure 3.8.7 and estimated parameter values are given in Table 3.8.6. Standardised residuals from the assessment model are shown in Figures 3.8.8 (landings) and 3.8.9 and 3.8.10 (surveys). The residuals show some tendency for model over-prediction of landings at age six and also either a positive trend or reduced variability in landings residuals at ages seven and eight. These patterns appear to be associated with changes in the fishing mortality at age which the TSA is unable to model appropriately even with an increase in the variability of fishing mortality at age for ages three and four. The survey residuals are well distributed and relatively small.

There is no clear relationship between stock size (SSB) and recruitment to the fishery (at age three) for this stock (Figure 3.8.11). The recruitment time series with underlying estimated random walk is shown in Figure 3.8.12.

Retrospective Analysis

The retrospective plots shown in Figure 3.8.13 suggest that the assessment is prone to underestimation of the recruitment, and consequently the SSB, in the final year (i.e. that estimates are revised upwards with each additional year's data). However,
this bias does not occur consistently across all years. It is much less apparent in the most recent years (three retrospective years) when only minor revisions occur and in these cases, final year estimates are all well within the confidence intervals of the estimates from the final (2016) model run. Mohn's ρ (average under/over estimation) is often used as a measure of assessment performance. For SSB, this is calculated as -0.15 (averaged over the last five assessments) i.e. 15% underestimation of SSB. Associated over-estimation of fishing mortality is also only apparent in retrospective runs ending in 2012 and earlier.

State of the Stock

Estimates (and standard errors) of age structured population abundance and fishing mortality are presented in Tables 3.8.7-3.8.10. The final estimates are smoothed across years, which explains the differences between the estimates of fishing mortality at age in the first year given here and the parameter estimates in Table 3.8.6.

The state of the stock is summarised in Figure 3.8.7 and Table 3.8.11. The final estimates for the stock are:
F in 2015(average over ages 4-6) $=0.153$
SSB (total over ages 3-10+) $=5074 \mathrm{t}$

There are currently no reference points for this stock.

Following a number of very strong year classes during mid-2000s, recruitment is estimated to be more moderate in recent years (although estimated with considerable uncertainty). The SSB increased during the 2000s to a peak of over $8000 t$ in 2010, but has been declining since 2012. Mean $F(4-6)$ has increased since 2009, in line with the increase in landings, but is still at around the long term average despite the high landings (due to the currently greater stock size).

3.8.6 Comparison with Previous Assessments

The last Scottish scallop assessment report was published in 2012 (Dobby et al., 2012). A comparison between the latest assessment and that given in the 2012 report is presented in Figure 3.8.14. The two assessments show good consistency, in the estimates of fishing mortality and recruitment until the mid-2000s, but since then show differing trends. The main factor contributing to this difference is the alternative assumptions about the survey data with the earlier assessment treating the survey data as a single survey index while in the most recent assessment it was considered more appropriate to treat the data as two separate time series. In addition, a number of revisions have been made to historical landings data (higher landings in some years in the most recent assessment) due to delays with data entry into the FIN database.

NAFC Marine Centre also conduct stock assessments of the scallops around Shetland and provide advice to the SSMO. Their advice on stock status is based on a landings per unit effort (LPUE) series which shows a slight increasing trend in recent years (MSC, 2016). In contrast, results from their quarterly VPA indicate a decline in abundance due to somewhat weaker recent recruitment which is more in line with the assessment presented in this report. NAFC assessments account for only landings by SSMO vessels while the MSS assessment uses total officially reported landings from the Shetland area (including non-SSMO vessels) which may explain some of the differences in the assessment results.

3.8.7 Quality of the Assessment

Landings Data

Fishers are required to provide information about quantities landed and fishing location by ICES rectangle on either EU logbooks or Fish 1 forms (under 10 m vessels). The implementation of 'the registration of buyers and sellers' legislation in the UK in 2006 requires details of the landed catch also to be recorded at the point of first sale and sales notes are cross checked against vessels landings declarations. This procedure is thought to have improved the accuracy of reported landings since then.

Age Composition

Market samples from the Shetland area are collected and provided by staff from NAFC Marine Centre under a Memorandum of Understanding between NAFC Marine Centre and MSS. Sampling levels for this area are considered to be very good.

Survey Data

A full Shetland scallop survey typically consists of over 60 stations although in recent years this has been substantially curtailed due to poor weather. Figure 3.8.15 shows the standard survey stations in relation to the fishing grounds as inferred from VMS effort data associated with scallop landings. Although there is a high density of stations in some areas, a number of important fishing areas are not surveyed. There are no survey stations located around the Outer Skerries or to the southeast of Whalsay, areas which have been fished regularly in recent years. (Note that in this assessment area, a significant proportion of the landings are taken by $<12 \mathrm{~m}$ vessels and therefore the VMS effort plot may not provide a complete picture of the scallop grounds).

The survey utilises a standard commercial dredge with large belly rings and a smaller laboratory dredge with small belly rings. Younger age classes (two and three year olds) have lower survey catchability because they are smaller in length and width and are able to pass through the belly rings of the dredge which results in uncertain estimates of recruitment in the final year.

Retrospective Bias

The assessment shows some tendency towards biased estimates of SSB and F (although not consistently over all retrospective runs). However, the direction of bias (underestimating SSB, overestimating F) leads to a conservative stock assessment and any resulting advice is therefore more likely to be precautionary.

3.9 West of Kintyre

3.9.1 Description of the Fishery

The West of Kintyre assessment area has a long history of exploitation with periods of high and low landings (Figure 3.1.1). The main fishing grounds are around the islands of Islay and Jura and the southern end of the Kintyre peninsula. The fishery operates all year round. Landings have fluctuated between around 500 and 2,500 tonnes over the stock assessment period and in 2016 were 1,412 tonnes (at about long term average). The fishery is prosecuted regularly by a fleet of around 15 vessels which range from 9.9 m to approximately 20 m in length and typically land their catch into Campbeltown, Islay, Tayinloan and West Loch Tarbert. Up to six vessels from the Isle of Man may also fish this area at various times of the year. In addition, three local (< 10 m) vessels and a number of seasonal visiting vessels operate a dive fishery in the inshore waters of the West of Kintyre.

3.9.2 Sampling Levels and Age Compositions

The West of Kintyre area has generally been well sampled since the mid-1980s. Sampling levels are shown in Table 3.2.1. In 2015, 5,257 individual scallops were measured and aged from 31 sampled trips.

Catch-at-age Data

Catch-at-age data for the West of Kintyre, from 1982 to 2015 are shown in Table 3.9.1 and Figure 3.9.1. In the early part of the time series, scallops of age eight years and older, and particularly 10+, were well represented in the catches, but have been less evident since the 1990s. In contrast, the number of scallops at ages four to seven in the catch has increased considerably since this time. The number of age two individuals in the catch has also reduced over time.

3.9.3 Biological Data

The mean weights at age are shown in Figure 3.9.2 and Table 3.9.2. The mean weights of individuals aged four to seven show a gradual decline since the mid1990s. Mean weights for those age categories which are less important in the catch (particularly ages nine and 10+) show greater variability and temporal trends which are similar across age classes.

3.9.4 Exploratory Analyses

Catch Data

Mean standardised catch-at-age data by proportion are shown in Figure 3.9.3 with dark bubbles illustrating above average values. Despite the good sampling levels, the commercial catch-at-age data appear very noisy for the West of Kintyre. The data identifies a period of weak year classes during the late 1980s which are picked up in the data as below average catches at older ages in the early 1990s. Following that there is some evidence of stronger recruitment in the early 1990s and again in the late 2000s. However, relative year class strength is generally not consistently tracked through cohorts in these data.

Survey Data

Details of west coast scallop surveys which cover the West of Kintyre assessment area are given in Table 3.6.3. No comparative tows have been conducted to compare catch rates between vessels and previous scallop stock assessments have suggested that despite standardisation of catch rates (to account for differences in the number of dredges worked by each vessel), survey vessel may have a significant impact on catchability. Therefore, in this assessment, the survey data are treated as three separate indices. The Aora dredge survey runs from 1993 to 2002, the Aora II from 2003 to 2007 and the Alba from 2008 to 2016 (Table 3.9.3). Within each of the three survey indices the seasonal timing of the survey has been relatively consistent over time.

The catch rates of scallops (age three and 4+ separately) at stations across the West of Kintyre area between 2013 and 2016 are shown in Figure 3.6.4. High catch rates of age three scallops are apparent in the 2013 survey in particular, suggesting good recruitment in that year. In general, the catch rates of age 4+ are much higher than those of age three individuals with consistently good catch rates across the West of Kintyre over the period shown.

Mean standardised survey catch rates at age are shown in Figure 3.9.4. On the whole the survey data appear quite noisy. The Aora survey identifies, year classes recruiting in the mid-1990s as above average although the 1996 data show a strong negative year effect with almost all ages caught at below average rates. The weak 1998 year class (recruitment at age three in 2001) is consistently estimated below average across the Aora and Aora II survey series up to age eight. The Alba survey
data provide some evidence of strong recruitment in the late 2000s, but relative year class strength is not estimated consistently at older ages.

A comparison of commercial catch-at-age data and survey indices is shown in Figure 3.9.5 (mean standardised at age over the common time period for each survey). The general trends in the Aora survey and commercial data are in general agreement over ages four to nine. The Alba survey also shows some consistency with the catch-at-age data, particularly in identifying strong recruitment (age three) in 2010.

Table 3.9.3 shows the average catch rates by age class and year. Catch rates of ages two and three are consistently lower than other age classes (particularly for the Alba survey) indicating a significantly lower survey catchability.

3.9.5 Final Assessment

TSA

The exploratory catch curve analysis indicates highly variable catch rates of age two individuals in both the commercial catch and survey. In addition, the catch rates of the 10+ age group in the survey are very noisy. These data are therefore excluded from the final assessment.

Recruitment occurs at age three and is implemented as a random walk (with parameters to be estimated) as there is no apparent relationship between SSB and recruitment.

All three survey time series are included in the assessment. The cv multiplier on each survey is adjusted to reflect the varying number of hauls. This allows for survey indices from years in which a greater number of survey hauls were conducted to be given more weighting in the assessment. Based on inspection of preliminary assessment residual plots, greater variability was allowed in particular age classes in the survey data and in fishing mortality in a number of years (by using a cv multiplier above one). The final TSA settings are given in Table 3.9.4.

Outputs from the TSA assessment are shown in Figure 3.9.6 and estimated parameters given in Table 3.9.5. Standardised residuals from the assessment model are shown in Figures 3.9.7 (landings) and 3.9.8-10 (surveys). Both catch and survey residuals are well distributed about zero and generally small. There is no evidence to indicate any major issues with fitting to the observed data.

There is no clear relationship between SSB and recruitment to the fishery (at age three) for this stock (Figure 3.9.11). The recruitment time series with underlying estimated random walk is shown in Figure 3.9.12.

Retrospective Analysis

The retrospective plots are shown in Figure 3.9.13. There is some evidence to suggest that the assessment tends to underestimate SSB (and slightly overestimate F) in the final year, as estimates are revised upwards with each additional year's data. Mohn's ρ (average under/over-estimation) is calculated as -0.12 i.e. 12% underestimate of SSB.

Stock Summary

Estimates (and standard errors) of age structured population abundance and fishing mortality are presented in Tables 3.9.6-3.9.9. The final estimates are smoothed across years which results in differences between the estimates of fishing mortality at age in the first year given here and the parameter estimates in Table 3.9.5.

The state of the stock is summarised in Figure 3.9.6 and Table 3.9.10. The final estimates for the stock are:

F in 2015 (average over ages 4-6) $=0.144$
SSB in 2016 (total over ages $3-10+$) $=10,451 \mathrm{t}$

There are currently no reference points for this stock.

Recruitment is estimated to have increased substantially since 2000 resulting in the highest estimated SSB of the time series in 2012. Since then the stock has remained relatively stable at a high level. This increase in stock size means that despite an increase in landings since 2011, fishing mortality remains relatively low.

3.9.6 Comparison with Previous Assessments

The last Scottish scallop assessment report was published in 2012 (Dobby et al., 2012). A comparison between the latest assessment and that given in the 2012 report is presented in Figure 3.9.14. The two assessments show good consistency, in the estimates of fishing mortality and recruitment until the early 2000s. Since 2003 the two assessments show a diverging trend with the most recent assessment showing an increasing SSB to 2010 while the 2012 assessment estimates a
declining SSB over this period. The main factor contributing to this difference is the alternative assumptions about the survey data with the earlier assessment treating the survey data as a single survey index while in the most recent assessment it was considered more appropriate to treat the data as three separate time series.

3.9.7 Quality of the Assessment

Landings Data

Fishers are required to provide information about quantities landed and fishing location by ICES rectangle on either EU logbooks or Fish 1 forms (under 10 m vessels). The implementation of 'the registration of buyers and sellers' legislation in the UK in 2006 requires details of the landed catch also to be recorded at the point of first sale and sales notes are cross checked against vessels landings declarations. This procedure is thought to have improved the accuracy of reported landings data since then.

The main uncertainty in the West of Kintyre stock assessment is associated with the estimate of landings being taken from the western half of statistical rectangle 40E4, the eastern half of the rectangle being part of the Clyde assessment area. Vessels are required to report landings at a statistical rectangle level so the allocation of landings to the two components relies on the local fishery office having detailed knowledge of where vessels have been fishing within 40E4. There has been a noticeable decline in the proportion of the landings from 40E4 which have been attributed to the West of Kintyre in recent years and most of the landings are now allocated to the Clyde assessment area. Given the level of VMS derived scallop fishing effort occurring in the two halves of the rectangle (Figure 3.6.16), the current split seems unlikely to be appropriate (although the apparent lack of effort in the eastern half may in part be attributable to under 12 m vessels fishing without VMS). As a result, landings from this area may be underestimated which could result in underestimates of fishing mortality.

Age Composition

Although market sampling levels across this area have generally been good, the age composition data for this stock still appears to be relatively noisy.

Survey Data

The survey provides good coverage of the fishing grounds (as inferred from scallop VMS, Figure 3.6.16) off the east coast of Islay, the southeast of Jura and to the west of the Kintyre peninsula. However, there are areas within the West of Kintyre assessment area where survey coverage is poorer including the area to the northern end of the sound of Jura (where fishing effort is high) and the grounds between southwest of Islay and Northern Ireland where there is a large patch of lower intensity scallop fishing effort.

The survey utilises a standard commercial dredge with large belly rings and a smaller laboratory dredge with small belly rings. Younger age classes (two and three year olds) have lower survey catchability because they are smaller in length and width and are able to pass through the belly rings of the dredge which results in uncertain estimates of recruitment in the final year.

Retrospective Bias

The assessment shows some tendency towards systematic underestimation of SSB (and overestimation of F). However, the direction of bias (underestimating SSB, overestimating F) leads to a conservative stock assessment and any resulting advice is therefore likely to be more precautionary.

4 General Discussion

4.1 Regional Summaries

Substantial scallop fisheries have existed around the coast of Scotland for many years. In some areas, such as the Irish Sea, Shetland and Orkney there are systematic increases apparent in the landings data. However, in other areas (North West and North East), the landings are characterised by occasional and rapid increases or declines. Some of these are associated with fishery closures due to ASP/PSP toxins, but others appear to be due to the appearance of strong year classes (increases in recruitment).

The TSA stock assessments show that following periods of lower recruitment during the late 1990s, the stocks to the north and east of Scotland (East Coast , North East and Shetland) experienced higher recruitment during the 2000s resulting in increased SSB. More recent recruitment is estimated to be poorer, particularly in the East Coast and North East areas, and SSB also now shows a declining trend. The recent high catches in the East Coast area are reflected in an increase in fishing mortality while fishing mortality in the North East is estimated to be fluctuating without trend in recent years, but with significant uncertainty surrounding the estimates.

To the west of Scotland (North West and West of Kintyre assessment areas), recent good recruitment has resulted in increases in SSB. In both areas fishing mortality has declined since 2000, despite a substantial increase in catches from the West of Kintyre area.

Historical stock trends estimated by the TSA approach show generally good agreement with previous scallop assessments (Dobby et al., 2012). The absolute level of SSB, presented here is not directly comparable with previous assessments as different measures have been used to define these quantities (total live weight in 2016, muscle weight in 2012). At present there are insufficient data from the Clyde, the Irish Sea and Orkney assessment areas to perform analytical assessments or evaluate stock trends.

The stock recruitment plots provided for the five areas assessed using TSA show little evidence of a stock recruitment relationship and for this reason, recruitment is modelled as a random walk. One explanation for this lack of relationship is that the model estimates of SSB (biomass of individuals aged three and above) may not be a good measure of spawning potential either because a proportion of two year old
individuals are also likely to be mature but are not included in the model or because SSB does not sufficiently account for the greater reproductive output of larger individuals. Another is that recruitment is largely independent of stock size (although others have observed density dependent effects, Vahl, 1982) and is driven more by external factors such as environmental conditions, which are not included in the model.

4.2 Management Considerations

There are currently no agreed biomass or fishing mortality reference points for Scottish scallop stocks. MSS' comments on stock status and management considerations are therefore provided on the basis of a comparison of estimates of current fishing mortality, recruitment and biomass in relation to historical values and perceptions of how the stock might develop. Recruitment is clearly important to the fishery. In most of the assessment areas, periods of highest landings are associated with good recruitment, which in turn appear to drive upturns in SSB. Successive recruitments appear to be correlated, with high and lows evolving over four to eight years. During periods of low recruitment, there may be a need to reduce fishing mortality (resulting in reduced landings) to enable a stock to rebuild to (or be maintained at) a level that allows for MSY in future.

For the East Coast, North East and Shetland ${ }^{1}$ assessment areas, where recruitment and SSB are declining, advice is for no increase in effort and to consider measures to safeguard the spawning stock at a level that will support MSY for future generations.

For the North West and West of Kintyre assessment areas, the prognosis has improved since the last assessments. Recent recruitment has been high or increasing, while fishing mortality has been stable at or below the long term average. Under these circumstances, advice is for no increase in effort.

New Scottish legislation implemented in mid-2017 increases the MLS from 100 mm to 105 mm for UK vessels in all areas around Scotland excluding the Irish Sea and Shetland (The Regulation of Scallop Fishing (Scotland) Order 2017). Although this may result in a short-term reduction in landings, it has the potential to increase the reproductive capacity of stocks (providing that there is no increase in fishing mortality

[^1]of larger individuals) and landings in the longer term. Measures to restrict effort are in place (limited licences, zonal dredge limits), but there is currently no mechanism for reducing fishing effort or landings which may in future be required in order to manage fishing mortality under an MSY approach.

In the Irish Sea, there is a restrictive licensing scheme and a range of management measures (curfews, area closures) which apply to vessels fishing for king scallops in Manx waters. Recently, the Isle of Man government have expressed concerns about declines in commercial catch per unit effort data for scallops and, in response to high catch rates at the start of the 2016 fishing season, introduced a temporary limit on daily catch rates in Manx waters. Several administrations have interests and responsibilities for scallop fisheries in the Irish Sea and there is a need to bring together data from different sources to develop a more consistent, multilateral approach to the assessment (and management) of stocks in the area. MSS scientists are involved in the ICES Working Group on scallops which could facilitate the improved scientific collaboration required to produce robust stock assessments for this area.

4.3 Reference Points

The lack of a clear stock recruitment relationship is often assumed to preclude the calculation of target reference points based on maximum sustainable yield (MSY). However, ICES have derived MSY reference points based on an approach which uses stochastic projections to account for uncertainty in the stock recruitment model, in addition to random deviations from the model (ICES, 2016). The software which has been developed to conduct these simulations (Eqsim, part of the 'msy' R package) is also able to account for uncertainty in other population parameters such as weights at age and fishery selectivity. Alternatively, reference points based on per recruit analysis are often used as proxies for $F_{\text {MSY (}}$ (ICES, 2010). ICES has advised on the use of $\mathrm{F}_{\text {MAX }}$ (fishing mortality at the maximum of the yield per recruit (YPR) curve) as an appropriate proxy unless there is evidence of poor recruitment at such levels of fishing mortality. In cases where the maximum of the YPR curves is less well defined then $\mathrm{F}_{0.1}$ (fishing mortality at which the slope of the YPR curve is 10 $\%$ of the slope at the origin) or reference points based on spawning biomass per recruit are likely to be more appropriate proxies.

The ICES advice framework also makes use of biomass reference points which are used as limits rather than targets. For many ICES fish stocks, $\mathrm{B}_{\mathrm{lim}}$ (limit reference point for biomass) has been defined as the historical lowest observed spawning stock ($\mathrm{B}_{\text {loss }}$) - the value below which recruitment is expected to be 'impaired' or the
stock dynamics are unknown. The precautionary reference point (B_{PA}) is derived from this value by adjusting it to account for variability and uncertainty in the assessment (ICES, 2016).

Scallop (Placopecten magellanicus) stocks off the north east US coast are managed in relation to a target fishing mortality of 80% of $F_{\text {MAX }}$ (used as a proxy for $F_{\text {MSY }}$). A proxy for $\mathrm{B}_{\text {MSY }}$ on the basis of the product of $\mathrm{B}_{\text {MAX }}$ (biomass per recruit at $\mathrm{F}_{\text {MAX }}$) and the median number of recruits per tow from the survey is also used (SAW Invertebrate Subcommittee, 2004). The threshold for being in an 'overfished condition' is defined as half of $\mathrm{B}_{\mathrm{MAX}}$. In New Zealand, $\mathrm{F}_{0.1}$ is used as a target fishing mortality in the major scallop (Pecten novaezelandiae) fisheries (New Zealand Government, 2011).

There are clearly a number of options to be explored for the calculation of appropriate reference points for Scottish scallop stocks. The calculation of fishing mortality reference points using the Eqsim software would be relatively straightforward given that the required inputs for the calculations are a direct output from the TSA assessment. In addition, there is a relatively long time series of abundance estimates that could potentially be used to derive biomass reference points. However, testing these reference points within a management strategy evaluation framework would be a more time consuming procedure. The development of reference points would enable the provision of fishery advice consistent with MSY principles and for stocks to be assessed in terms of good environmental status as required under the EU Marine Strategy Framework Directive (MSFD) (EC, 2008). It is anticipated that preliminary reference points will available ahead of MSS' next round of assessments.

4.4 Comments on the Quality of the Data and Assessment

The accuracy and precision of the estimates of stock status depend on the quality of both the total commercial catch-at-age data and the survey indices at age. The catch-at-age data are derived from length and age structured data sampled by MSS staff which are then raised to total official landings data. The introduction of buyers and sellers legislation in 2006 is thought to have improved the accuracy of reported landings, although given that Scottish scallop fisheries are not regulated through TACs there is actually no incentive for fishers to underreport or misreport scallops.

The allocation of landings from statistical rectangle 40E4 between the Clyde and West of Kintyre assessment areas remains problematic and is potentially resulting in biased estimates of landings and biases in subsequent stock assessment results. In
recent years, the current approach provides a landings split which is at odds with the apparent fishery distribution in the area. The introduction of a new Scottish Government official landings database in 2017 will require the estimation procedure to be modified for 2017 onwards. Potential approaches which are currently being explored, and may provide improved estimates, include making use of VMS data for vessels $>12 \mathrm{~m}$ and allocating trip landings on the basis of location of landings harbour.

There are insufficient age composition samples from the Clyde, Irish Sea and Orkney to perform analytic stock assessments. Clyde and Orkney have historically been less important scallop fishery areas and the unpredictable nature of these fisheries can make the acquisition of landings samples particularly difficult. The number of samples from the Clyde has increased in recent years and the resulting data, provided sampling is maintained, could potentially form the basis of an assessment based on commercial catch-at-age data in future years. The Irish Sea is currently the most important of the scallop assessment area in terms of total landings, but over half of these are landed into ports outside Scotland. Samples from Scottish ports are therefore unlikely to be representative of the fishery as a whole. A collaborative programme of work (UK and Isle of Man) to cover sampling and stock monitoring is required to improve the basis for assessment and advice in this area.

In other areas for which MSS have conducted analytical assessments, sampling levels tend to be relatively good for the west of Scotland areas (and Shetland) and poorer for the North Sea assessment areas. Although a single year with poor sampling levels may not significantly affect the conclusions of the assessment, continued poor sampling levels are likely to result in less precise, and potentially biased, results. It is unlikely that additional resources will be made available for sampling in the foreseeable future. There are, however, moves within MSS to redesign the shellfish sampling program with a view to implementing a more formal probability based sampling scheme, increasing the likelihood of unbiased estimates and appropriate coverage of stocks.

In their recent report, the ICES Scallop Assessment WG identify scallop ageing as an area of uncertainty and have proposed an international ageing comparison study through a shell exchange. Within MSS, age-reading training is conducted on a regular basis. The general agreement in trends in age composition data from different sources (survey and landings) suggests consistent age reading (although this does not preclude possible bias in the readings). In some areas (particularly the West of Kintyre) the age composition data appear more noisy which could be due to
age reading errors. Equally, it could reflect a heterogeneity of the stock or fishery in the area.

The survey data are an integral component of the stock assessments. The surveys show reasonably good coverage of the fished areas according to scallop dredge VMS data with the exception of the West of Kintyre where there are a number of areas with apparently high fishing effort which are not surveyed. The density of stations is greatest in Shetland although in recent years no survey (or only a partial survey) has been completed due to poor weather. It is not clear whether such a high density of stations is required to retain a particular level of precision in the survey abundance index estimates. In recent years a number of stations to the west of Scotland have not been surveyed due to the presence of newly designated marine protected areas (MPAs) and other areas closed to scallop fishing. An analysis of the historical survey data suggested that the survey index was relatively insensitive to the inclusion/exclusion of these survey stations.

The results from previously presented Scottish scallop stock assessments (Dobby, et al., 2012) suggested a mismatch between the survey and catch data which was interpreted by the model as a change in survey catchability over time. The most significant changes appeared to coincide with the changes in survey vessel which had not been accounted for in the work up of the survey index. In the assessments presented this year, the survey data are included as separate indices for each vessel which has resulted in persistent trends in catchability being either estimated as nonsignificant or zero.

The current stock assessments provide an indication of stock status (and dynamics) in the assessment areas as currently defined. These areas were, however, based on the characteristics of fisheries in the past rather than on the basis of evidence of discrete populations. The population structure of Scottish scallop stocks is not well understood. Scallops are sedentary in nature and only able to swim only limited distances. Larvae, however, inhabit the water column for three weeks or more, during which time they may drift a substantial distance (dependent on water circulation, tides and wind driven currents) from the parent population before settling to the sea bed. The similar trends in recruitment across the West of Kintyre and North West and also in the North East and East Coast suggest that there are linkages between some of these areas at pre-recruitment stages with similar trends in survival to age of recruitment. There is potential for population linkage across substantial distances. Habitats suitable for scallops are patchily distributed and some patches of adult population may provide a source of larvae for others. Approaches which combine hydrodynamic and population modelling could provide insights into the nature and extent of connectivity between scallop populations around Scotland and represent a significant area of further work.

5 References

Anon. 1995. Report of Marine Laboratory Scallop Workshop, 1994. Scottish Fisheries Working Paper No. 1/95. 28pp.

Cook, R, Bailey, N, McKay, D, Howell, D, Fraser, D. and Thain, S. 1990. Report of an internal scallop workshop 23-27 April 1990. Scottish Fisheries Working Paper No. 5/90, 7pp.

Darby, C.D. and Flatman, S. 1994. Virtual Population Analysis: version 3.1 (Windows/Dos) user guide. MAFF Information Technology Series no. 1, Directorate of Fisheries, Lowestoft.

Dobby, H., Millar, S., Blackadder, L., Turriff, J. and McLay, A. 2012. Scottish Scallop Stocks: Results of 2011 Stock Assessments. Scottish Marine and Freshwater Science, Vol 3, No. 10.

EC 2008. Directive 2008/56/EC of the European parliament and of the council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union, L 146: 19-40.

Fryer R.J. 2002. TSA: is it the way? Appendix D in Report of Working Group on Methods of Fish Stock Assessment, Dec.2001. ICES CM 2002/D:01, 86-93.

Gudmundsson, G. 1994. Time Series Analysis of Catch-at-age Observations. Journal of Applied Statistics, 43:117-126.

Hart, D.R. 2003. Yield- and biomass-per-recruit analysis for rotational fisheries, with an application to Atlantic sea scallop (Placopecten magellanicus). Fishery Bulletin, 101:44-57.

Howell, T.R.W., Davis, S.E.B., Donald, J., Dobby, H., Tuck, I. and Bailey, N. 2006. Report of Marine Laboratory Scallop Stock Assessments. Report No. 08/06. 152pp.

Hurtado-Ferro, F., Szuwalski, C. S., Valero, J. L., Anderson, S. C., Cunningham, C. J., Johnson, K. F., Licandeo, R., McGilliard, C. R., Monnahan, C. C.,Muradian, M. L., Ono, K., Vert-Pre, K. A., Whitten, A. R. and Punt, A. E. 2015. Looking in the rearview mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES Journal of Marine Science, 72(1): 99-110.

ICES, 2010. Report of the Workshop on Implementing the ICES Fmsy framework , 22-26 March 2010, Copenhagen, Denmark. ICES CM 2010/ACOM:54. 83 pp.

ICES. 2011. Report of the Working Group for Celtic Seas Ecoregion (WGCSE), 1119 May 2011, Copenhagen, Denmark. ICES CM 2011/ACOM:12. 1573 pp.

ICES. 2016. Report of the Workshop to consider $\mathrm{F}_{\text {MSY }}$ ranges for stocks in ICES categories 1 and 2 in Western Waters (WKMSYREF4), 13-16 October 2015, Brest, France. ICES CM 2015/ACOM:58. 183 pp

Leslie B., Laurenson, C., Shelmerdine R., Gear D.J.R., \& Winter, K.A. 2009. Shetland Shellfish Stock Assessments 2009. NAFC Marine Centre Report. 100pp.

MSC, 2016. MSC Sustainable Fisheries Certification: On-Site Surveillance Visit Report for SSMO Shetland inshore brown and velvet crab and scallop fishery. (https://fisheries.msc.org/en/fisheries/ssmo-shetland-inshore-brown-velvet-crab-andscallop/@@assessments)

Murray, L.G., Hinz, H. \& Kaiser, M.J. 2009. Marine fisheries research report to DAFF 2007/2008. Fisheries \& Conservation report No. 7, Bangor University. pp. 60.

Needle, C. L. 2008. Management strategy evaluation for North Sea haddock. Fisheries Research, 94,141-150.

New Zealand Government. 2011. Summary of the most recent New Zealand fishery, biological, stock assessment and stock status information on scallops (SCACS). Ministry of Fisheries, New Zealand Government.
(http://fs.fish.govt.nz/Doc/22928/14-SCA7 2011.pdf.ashx)

SAW Invertebrate Subcommittee 2004. Stock assessment for Atlantic Sea Scallops (Placopecten magellanicus) Consensus Assessment Report, SARC 39. (http://www.nefsc.noaa.gov/sos/spsyn/iv/scallop/SARC39Scallops.pdf)

Scottish Government, 2010. Fish and Shellfish Stocks 2010. Published by Marine Scotland, The Scottish Government.

Scottish Government, 2016. Simple guide to fisheries management measure in Marine Protected Areas. Published by The Scottish Government.
http://www.gov.scot/Resource/0049/00498320.pdf
Vahl, O. 1982. Long-term variation in recruitment of the Icelandic scallop, Chlamys islandica, from northern Norway. Netherlands Journal of Sea Research 16:80-87.

6 Tables

Table 2.1.1: Scottish scallop assessment areas.

Name	Statistical Rectangles	Section
Clyde	$39-40$ E5; 40 E4 (eastern half)	3.2
East Coast	$39-43$ E8-F0; 40-41 E6; 40-43	3.3
Irish Sea	E7; 44 E9-F0	3.4
North East	35-37 E3-E7; 38 E4-E6	34 E5-E8; 45 E6-E9; 46 E7-E9;
North West	47 E8-E9	3.5
Orkney	$41-46$ E1-E3; 42-46 E4	3.6
Shetland	47 E4; 46-47 E5-E6; 47 E7	3.7
West of Kintyre	48-51 E7-E9 39-40 E2-E3; 39 E4; 40 E4 (western half); 41 E4	3.8

Table 3.1.1: Scottish (UK vessels into Scotland) dredge landings (tonnes).

Year	Clyde	East Coast	Irish Sea	North East	North West	Orkney	Shetland	West of Kintyre	Total
$\mathbf{1 9 8 2}$	102	5	340	672	3173	42	422	1510	6266
$\mathbf{1 9 8 3}$	68	0	266	645	2035	29	357	1234	4634
$\mathbf{1 9 8 4}$	132	0	594	403	2220	22	402	1677	5450
$\mathbf{1 9 8 5}$	180	0	538	388	1524	4	212	913	3759
$\mathbf{1 9 8 6}$	76	0	270	559	1437	109	362	688	3501
$\mathbf{1 9 8 7}$	92	1	415	679	1670	120	311	883	4171
$\mathbf{1 9 8 8}$	79	0	594	671	1608	35	359	469	3815
$\mathbf{1 9 8 9}$	31	1	450	894	1581	293	537	577	4364
$\mathbf{1 9 9 0}$	18	2	451	952	1357	176	447	620	4023
$\mathbf{1 9 9 1}$	48	540	374	385	1104	124	405	617	3597
$\mathbf{1 9 9 2}$	23	321	234	1733	1070	26	534	781	4722
$\mathbf{1 9 9 3}$	75	626	314	1571	976	0	530	1014	5106
$\mathbf{1 9 9 4}$	182	1813	242	2322	1845	110	603	1073	8190
$\mathbf{1 9 9 5}$	139	1902	410	3150	1366	214	743	890	8814
$\mathbf{1 9 9 6}$	110	679	605	3490	2037	214	674	1154	8963
$\mathbf{1 9 9 7}$	231	715	397	2943	2300	146	932	1360	9024
$\mathbf{1 9 9 8}$	243	1006	682	1739	2698	163	920	1528	8979
$\mathbf{1 9 9 9}$	201	1819	1039	1682	1087	291	748	1188	8055
$\mathbf{2 0 0 0}$	352	726	458	1512	3337	99	338	1630	8452
$\mathbf{2 0 0 1}$	304	299	732	1736	4132	442	492	1069	9206
$\mathbf{2 0 0 2}$	473	416	637	738	4261	268	558	1308	8659
$\mathbf{2 0 0 3}$	508	818	634	1814	3441	175	757	1410	9557
$\mathbf{2 0 0 4}$	541	2439	751	1958	3163	148	894	1026	10920
$\mathbf{2 0 0 5}$	415	1571	839	2025	2517	220	720	1021	9328
$\mathbf{2 0 0 6}$	387	1769	733	1795	1135	117	772	785	7493
$\mathbf{2 0 0 7}$	300	2593	831	1333	1300	104	858	974	8293
$\mathbf{2 0 0 8}$	439	1843	894	1385	2201	184	880	1383	9209
$\mathbf{2 0 0 9}$	451	1528	1450	2155	1318	192	915	1092	9101
$\mathbf{2 0 1 0}$	528	1757	1461	1267	1134	176	1071	1305	8699
$\mathbf{2 0 1 1}$	500	828	1233	809	1207	431	911	1276	7195
$\mathbf{2 0 1 2}$	753	1455	1008	1285	1553	421	1144	2081	9700
$\mathbf{2 0 1 3}$	572	2238	1034	2767	1813	614	1413	1366	11817
$\mathbf{2 0 1 4}$	556	1465	1074	1874	1929	277	1005	1528	9708
$\mathbf{2 0 1 5}$	514	2220	826	1824	1917	379	1080	934	9694

Table 3.1.2: Diver caught landings (tonnes) into Scotland.

Year	Clyde	East Coast	Irish Sea	North East	North West	Orkney	Shetland	West of Kintyre	Total
$\mathbf{1 9 8 2}$	0	0	0	12	163	7	1	83	266
$\mathbf{1 9 8 3}$	5	0	0	4	303	38	0	106	456
$\mathbf{1 9 8 4}$	3	0	0	0	388	98	0	59	548
$\mathbf{1 9 8 5}$	11	0	0	0	310	71	0	63	455
$\mathbf{1 9 8 6}$	0	0	0	17	299	35	6	94	451
$\mathbf{1 9 8 7}$	0	0	0	1	426	46	0	105	578
$\mathbf{1 9 8 8}$	0	0	0	5	244	49	1	88	387
$\mathbf{1 9 8 9}$	1	0	0	0	170	74	0	59	304
$\mathbf{1 9 9 0}$	0	0	0	3	83	57	0	41	184
$\mathbf{1 9 9 1}$	0	0	0	0	175	70	21	47	313
$\mathbf{1 9 9 2}$	0	0	0	0	199	87	1	47	334
$\mathbf{1 9 9 3}$	0	0	0	0	171	36	47	48	302
$\mathbf{1 9 9 4}$	1	0	0	0	157	92	27	120	397
$\mathbf{1 9 9 5}$	0	0	0	2	453	222	22	38	737
$\mathbf{1 9 9 6}$	0	0	0	3	287	150	0	109	549
$\mathbf{1 9 9 7}$	0	1	0	1	481	139	0	128	750
$\mathbf{1 9 9 8}$	0	0	0	0	394	176	6	135	711
$\mathbf{1 9 9 9}$	0	0	0	0	150	162	7	62	381
$\mathbf{2 0 0 0}$	5	0	0	4	142	162	0	18	331
$\mathbf{2 0 0 1}$	15	0	0	9	244	126	0	113	507
$\mathbf{2 0 0 2}$	37	0	0	3	272	117	14	50	493
$\mathbf{2 0 0 3}$	18	0	0	0	296	113	4	59	490
$\mathbf{2 0 0 4}$	27	0	0	3	118	87	0	43	278
$\mathbf{2 0 0 5}$	42	0	0	3	134	172	0	43	394
$\mathbf{2 0 0 6}$	11	0	0	6	196	100	0	52	365
$\mathbf{2 0 0 7}$	4	0	0	0	230	80	0	48	362
$\mathbf{2 0 0 8}$	37	0	0	1	162	89	0	56	345
$\mathbf{2 0 0 9}$	24	0	0	3	205	101	0	60	393
$\mathbf{2 0 1 0}$	6	0	0	1	228	125	0	73	433
$\mathbf{2 0 1 1}$	6	0	0	0	175	140	0	65	386
$\mathbf{2 0 1 2}$	11	0	0	0	206	133	2	77	429
$\mathbf{2 0 1 3}$	56	0	0	0	208	125	0	67	456
$\mathbf{2 0 1 4}$	63	0	0	3	263	164	8	96	598
$\mathbf{2 0 1 5}$	51	0	0	1	275	213	9	114	663
		0	0	0					

Table 3.1.3: Total landings (tonnes) from Scottish assessment areas, as used in the assessments (includes landings into UK, Ireland and the Isle of Man). Note that estimated Irish Sea landings prior to 2000 may include a small amount of landings from elsewhere in ICES Sub-area VIIa (i.e. from outside the Irish Sea assessment area).

Year	Clyde	East Coast	Irish Sea	North East	North West	Orkney	Shetland	West of Kintyre	Total
$\mathbf{1 9 8 2}$	102	5	2323	684	3336	49	423	1719	$\mathbf{8 6 4 1}$
$\mathbf{1 9 8 3}$	73	0	2157	649	2338	67	357	1446	$\mathbf{7 0 8 7}$
$\mathbf{1 9 8 4}$	134	0	3030	403	2608	121	402	1873	$\mathbf{8 5 7 1}$
$\mathbf{1 9 8 5}$	191	2	3031	388	1834	76	212	1053	$\mathbf{6 7 8 7}$
$\mathbf{1 9 8 6}$	78	0	2354	576	1735	143	368	844	$\mathbf{6 0 9 8}$
$\mathbf{1 9 8 7}$	92	1	2734	681	2096	169	311	1066	$\mathbf{7 1 5 0}$
$\mathbf{1 9 8 8}$	79	0	2433	676	1852	84	360	601	$\mathbf{6 0 8 5}$
$\mathbf{1 9 8 9}$	32	2	2343	895	1752	367	537	686	$\mathbf{6 6 1 4}$
$\mathbf{1 9 9 0}$	18	4	1814	956	1447	237	449	714	$\mathbf{5 6 3 9}$
$\mathbf{1 9 9 1}$	48	560	1675	385	1288	194	426	716	$\mathbf{5 2 9 2}$
$\mathbf{1 9 9 2}$	23	340	1240	1734	1270	113	535	893	$\mathbf{6 1 4 8}$
$\mathbf{1 9 9 3}$	77	643	1332	1572	1148	36	577	1146	$\mathbf{6 5 3 1}$
$\mathbf{1 9 9 4}$	184	1866	1733	2327	2010	202	634	1293	$\mathbf{1 0 2 4 9}$
$\mathbf{1 9 9 5}$	139	1953	1744	3155	1820	436	765	1002	$\mathbf{1 1 0 1 4}$
$\mathbf{1 9 9 6}$	111	696	2325	3501	2324	365	675	1364	$\mathbf{1 1 3 6 1}$
$\mathbf{1 9 9 7}$	231	737	2304	2948	2781	285	932	1606	$\mathbf{1 1 8 2 4}$
$\mathbf{1 9 9 8}$	243	1032	2805	1740	3096	340	926	1795	$\mathbf{1 1 9 7 7}$
$\mathbf{1 9 9 9}$	201	1866	3330	1683	1255	455	755	1350	$\mathbf{1 0 8 9 5}$
$\mathbf{2 0 0 0}$	357	745	2501	1516	3481	260	338	1721	$\mathbf{1 0 9 1 9}$
$\mathbf{2 0 0 1}$	319	313	3222	1800	4376	572	496	1249	$\mathbf{1 2 3 4 7}$
$\mathbf{2 0 0 2}$	510	478	2800	748	4533	385	572	1453	$\mathbf{1 1 4 7 9}$
$\mathbf{2 0 0 3}$	528	830	2768	1814	3758	291	764	1551	$\mathbf{1 2 3 0 4}$
$\mathbf{2 0 0 4}$	574	2445	2731	1968	3297	243	895	1174	$\mathbf{1 3 3 2 7}$
$\mathbf{2 0 0 5}$	456	1581	2881	2028	2656	393	720	1166	$\mathbf{1 1 8 8 1}$
$\mathbf{2 0 0 6}$	400	1805	3009	1829	1356	226	776	908	$\mathbf{1 0 3 0 9}$
$\mathbf{2 0 0 7}$	305	2745	3351	1338	1532	203	861	1108	$\mathbf{1 1 4 4 3}$
$\mathbf{2 0 0 8}$	481	1937	3912	1395	2407	285	880	1541	$\mathbf{1 2 8 3 8}$
$\mathbf{2 0 0 9}$	484	1641	5057	2159	1548	298	915	1386	$\mathbf{1 3 4 8 8}$
$\mathbf{2 0 1 0}$	534	1792	5191	1274	1365	314	1072	1478	$\mathbf{1 3 0 2 0}$
$\mathbf{2 0 1 1}$	523	865	4575	810	1394	599	911	1383	$\mathbf{1 1 0 6 0}$
$\mathbf{2 0 1 2}$	775	1500	4980	1306	1785	590	1151	2428	$\mathbf{1 4 5 1 5}$
$\mathbf{2 0 1 3}$	630	2269	5231	2776	2054	798	1418	1715	$\mathbf{1 6 8 9 1}$
$\mathbf{2 0 1 4}$	622	1511	5308	1897	2261	472	1024	2386	$\mathbf{1 5 4 8 1}$
$\mathbf{2 0 1 5}$	597	2287	5480	1827	2236	639	1099	1412	$\mathbf{1 5 5 7 7}$

Table 3.2.1: Market sampling levels by assessment area.

	CL		EC		IS		NE		NW		OR		SH		WK	
	Number	Trips														
1982									4832	19					7424	30
1983									4713	28					4885	27
1984							144	1	6707	36					2390	31
1985	154	1			0	0	158	1	5297	29	0	0	3648	35	9445	52
1986	0	0			551	4	2648	17	7084	34	0	0	6005	59	10166	55
1987	0	0			785	5	849	2	8321	43	0	0	4811	45	6595	31
1988	0	0			1348	6	305	2	2031	12	0	0	2977	29	5606	26
1989	221	1			0	0	1180	7	3740	23	441	2	5946	52	6208	21
1990	0	0			620	3	2202	12	7510	35	249	1	7045	53	13046	52
1991	396	2	2027	12	905	4	4973	23	20467	54	891	4	6120	60	25387	102
1992	245	1	945	6	1261	4	8386	36	25154	67	0	0	6422	58	17573	67
1993	1031	5	3328	14	4678	18	7434	34	19067	65	730	3	8967	73	17161	64
1994	603	3	9855	36	1694	6	10604	43	11742	52	825	4	9304	79	18468	79
1995	519	3	17301	70	3536	14	6042	26	12891	57	1179	7	8965	57	11473	43
1996	979	4	5919	27	1884	8	8330	37	18054	81	1306	8	9863	77	11979	47
1997	2618	12	4049	18	2029	9	7164	30	13043	60	1785	3	8209	61	7693	30
1998	781	4	1759	11	2863	13	3527	20	12005	66	905	6	6527	54	9902	42
1999	657	3	2939	18	1683	9	5447	29	1707	10	1644	7	8279	79	6027	26
2000	621	3	1146	8	1986	11	5946	36	11531	53	812	4	4562	40	9047	42
2001	1143	6	0	0	1302	6	4461	26	16875	83	1564	8	7402	69	8298	40
2002	883	6	340	2	330	2	2042	10	11237	58	664	4	7515	67	6063	30
2003	1141	7	715	3	1354	6	2965	15	9945	47	349	2	9316	83	8425	45
2004	2366	12	2295	11	1273	7	2418	11	3986	19	681	3	8698	77	3918	21
2005	1187	7	1039	5	336	2	1222	7	1172	15	0	0	8778	75	6138	34

$\mathbf{2 0 0 6}$	261	2	1097	5	986	6	1520	9	2421	13	0	0	11317	101	1373
$\mathbf{2 0 0 7}$	350	3	4260	18	844	4	948	4	2089	9	590	3	11825	110	4392
$\mathbf{2 0 0 8}$	1243	7	3979	17	616	2	4439	21	2919	13	1068	6	8000	94	4617
$\mathbf{2 0 0 9}$	471	3	3100	12	1923	7	1574	7	3599	15	1090	8	5976	59	5949
$\mathbf{2 0 1 0}$	2582	11	1287	6	947	5	1354	6	5142	31	1244	9	6512	65	2124
$\mathbf{2 0 1 1}$	913	5	1227	5	167	1	738	4	2338	16	844	5	6176	65	1890
$\mathbf{2 0 1 2}$	2907	15	2156	11	452	2	2161	10	5782	27	740	6	6795	68	3668
$\mathbf{2 0 1 3}$	2530	13	2848	14	0	0	1567	10	5942	33	626	3	6984	70	4055
$\mathbf{2 0 1 4}$	1740	11	1483	6	319	1	854	4	3805	21	453	2	6428	64	6823
$\mathbf{2 0 1 5}$	2903	14	2636	12	342	2	1251	5	7158	42	759	4	6989	71	5257

Table 3.2.2: Clyde. Total catch-at-age numbers (in thousands).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 1 1}$	0	24	462	1145	761	289	203	87	124
$\mathbf{2 0 1 2}$	0	5	392	1273	1041	759	490	396	112
$\mathbf{2 0 1 3}$	0	11	813	1122	657	482	270	118	161
$\mathbf{2 0 1 4}$	3	137	434	1063	771	458	216	144	167
$\mathbf{2 0 1 5}$	1	265	536	655	558	457	348	217	194

Table 3.3.1: East Coast. Total catch-at-age numbers (in thousands). No sampling took place in 2001.

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 1}$	109	191	198	234	165	262	208	188	862
$\mathbf{1 9 9 2}$	$\mathbf{1}$	13	282	232	250	220	157	109	496
$\mathbf{1 9 9 3}$	27	337	1711	826	255	172	90	75	189
$\mathbf{1 9 9 4}$	0	361	3528	4365	1343	376	205	146	553
$\mathbf{1 9 9 5}$	7	246	1788	3144	3280	1137	541	218	589
$\mathbf{1 9 9 6}$	2	52	357	755	1181	844	197	46	155
$\mathbf{1 9 9 7}$	5	69	520	732	1022	938	353	66	94
$\mathbf{1 9 9 8}$	0	20	103	486	809	1295	939	352	270
$\mathbf{1 9 9 9}$	0	204	367	518	781	1225	1546	1641	2547
$\mathbf{2 0 0 0}$	0	15	343	108	101	290	597	667	1177
$\mathbf{2 0 0 1}$	NA								
$\mathbf{2 0 0 2}$	0	559	547	84	32	65	176	202	238
$\mathbf{2 0 0 3}$	0	304	2475	918	123	201	178	195	359
$\mathbf{2 0 0 4}$	0	18	1344	4175	2986	1077	662	543	2013
$\mathbf{2 0 0 5}$	0	298	786	2169	2793	844	253	193	805
$\mathbf{2 0 0 6}$	0	190	537	1474	2577	2392	1513	509	777
$\mathbf{2 0 0 7}$	0	916	6912	3116	1724	1066	540	236	686
$\mathbf{2 0 0 8}$	43	812	2590	3060	1246	889	583	299	519
$\mathbf{2 0 0 9}$	10	284	1293	2016	1449	1174	852	451	832
$\mathbf{2 0 1 0}$	0	7	436	1770	4335	1538	886	449	355
$\mathbf{2 0 1 1}$	0	0	87	393	1020	1183	1086	428	316
$\mathbf{2 0 1 2}$	0	217	498	971	1186	1587	1373	642	809
$\mathbf{2 0 1 3}$	0	62	775	2113	2148	1888	1803	996	1097
$\mathbf{2 0 1 4}$	0	71	1254	2346	1782	1092	917	703	434
$\mathbf{2 0 1 5}$	0	103	1242	3396	2674	1772	1531	1107	1062

Table 3.3.2: East Coast. Mean weights-at-age (total live weight) (kg) in total catch (also used for stock weights).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 1}$	0.134	0.164	0.170	0.193	0.213	0.227	0.243	0.249	0.282
$\mathbf{1 9 9 2}$	0.118	0.134	0.134	0.168	0.187	0.201	0.206	0.227	0.228
$\mathbf{1 9 9 3}$	0.116	0.131	0.147	0.180	0.212	0.246	0.257	0.266	0.302
$\mathbf{1 9 9 4}$	0.123	0.128	0.149	0.161	0.197	0.233	0.239	0.254	0.279
$\mathbf{1 9 9 5}$	0.130	0.137	0.155	0.164	0.177	0.200	0.221	0.232	0.253
$\mathbf{1 9 9 6}$	0.125	0.129	0.150	0.172	0.190	0.211	0.243	0.278	0.280
$\mathbf{1 9 9 7}$	0.120	0.131	0.160	0.173	0.189	0.211	0.234	0.253	0.303
$\mathbf{1 9 9 8}$	0.125	0.150	0.167	0.198	0.221	0.239	0.263	0.283	0.299
$\mathbf{1 9 9 9}$	0.123	0.160	0.176	0.178	0.190	0.198	0.211	0.223	0.233
$\mathbf{2 0 0 0}$	0.120	0.136	0.170	0.177	0.201	0.195	0.216	0.228	0.261
$\mathbf{2 0 0 1}$	0.120	0.146	0.135	0.163	0.173	0.191	0.208	0.218	0.239
$\mathbf{2 0 0 2}$	0.120	0.140	0.163	0.232	0.227	0.249	0.271	0.277	0.305
$\mathbf{2 0 0 3}$	0.120	0.130	0.153	0.171	0.203	0.222	0.236	0.250	0.265
$\mathbf{2 0 0 4}$	0.120	0.114	0.139	0.161	0.179	0.202	0.239	0.250	0.268
$\mathbf{2 0 0 5}$	0.120	0.107	0.134	0.167	0.197	0.217	0.236	0.254	0.300
$\mathbf{2 0 0 6}$	0.120	0.127	0.141	0.147	0.170	0.185	0.202	0.220	0.245
$\mathbf{2 0 0 7}$	0.120	0.134	0.146	0.178	0.217	0.246	0.267	0.266	0.314
$\mathbf{2 0 0 8}$	0.133	0.154	0.165	0.179	0.207	0.226	0.236	0.263	0.300
$\mathbf{2 0 0 9}$	0.128	0.141	0.151	0.163	0.187	0.213	0.227	0.257	0.294
$\mathbf{2 0 1 0}$	0.130	0.127	0.145	0.164	0.179	0.188	0.206	0.214	0.259
$\mathbf{2 0 1 1}$	0.130	0.127	0.142	0.159	0.173	0.185	0.196	0.225	0.272
$\mathbf{2 0 1 2}$	0.100	0.137	0.161	0.179	0.193	0.211	0.219	0.233	0.252
$\mathbf{2 0 1 3}$	0.100	0.133	0.151	0.169	0.191	0.214	0.235	0.249	0.274
$\mathbf{2 0 1 4}$	0.100	0.121	0.133	0.140	0.163	0.192	0.227	0.255	0.278
$\mathbf{2 0 1 5}$	0.100	0.130	0.138	0.142	0.160	0.193	0.215	0.225	0.257

Table 3.3.3: Summary of Marine Scotland Science North Sea scallop dredge surveys. Data from greyed out surveys are not used in the assessment.

R.V. Clupea	$\begin{gathered} \text { 18-Jun- } \\ 07 \end{gathered}$	$\begin{gathered} \hline \text { 08-Jul- } \\ 07 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	3 3	4.5	77	46	6548
R.V. Alba na Mara	$\begin{gathered} \text { 27-Jun- } \\ 08 \end{gathered}$	$\begin{gathered} \text { 16-Jul- } \\ 08 \end{gathered}$	A B	$\begin{array}{r} 6 \\ 6 \\ \hline \end{array}$	9	62	32	13110
R.V. Alba na Mara	01-Jul-09	$\begin{gathered} \text { 20-Jul- } \\ 09 \end{gathered}$	A B	6 6	9	56	43	11932
R.V. Alba na Mara	$\begin{gathered} \text { 25-Jun- } \\ 10 \end{gathered}$	$\begin{gathered} \text { 14-Jul- } \\ 10 \end{gathered}$	A B	6 6	9	69	45	13913
R.V. Alba na Mara	$\begin{gathered} \text { 22-Jun- } \\ 11 \end{gathered}$	$\begin{gathered} \text { 11-Jul- } \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	6 6	9	69	44	13716
R.V. Alba na Mara	$\begin{gathered} \text { 26-May- } \\ 12 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 12-Jun- } \\ 12 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	6 6	9	73	45	18424
R.V. Alba na Mara	04-Jul-13	$\begin{gathered} \hline \text { 21-Jul- } \\ 13 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	9	74	43	16038
R.V. Alba na Mara	$\begin{gathered} \text { 06-Jun- } \\ 14 \end{gathered}$	$\begin{array}{\|c} \hline \text { 24-Jun- } \\ 14 \end{array}$	A B	6 6	9	72	35	15875
R.V. Alba na Mara	$\begin{gathered} \text { 20-May- } \\ 15 \end{gathered}$	$\begin{array}{\|c} \text { 08-Jun- } \\ 15 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	9	48	42	16111
R.V. Alba na Mara	$\begin{gathered} \text { 19-May- } \\ 16 \end{gathered}$	$\begin{array}{\|c} \hline \text { 07-Jun- } \\ 16 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	6 6	9	70	45	13142

Dredge Type A: Standard commercial dredge. 2.5 ' wide. 9 tooth bar. Large belly rings.
Dredge Type B: Laboratory sampling dredge. 2.5' wide. 11 tooth bar. Small belly rings.

Table 3.3.4: East Coast. Research-vessel survey data. Catch rates (numbers hour ${ }^{1}$ metre ${ }^{-1}$) by age class and year.

Clupea

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 8}$	0.000	0.377	0.266	0.488	0.433	2.640	2.329	4.259	4.315
$\mathbf{1 9 9 9}$	0.098	0.623	0.383	0.317	0.328	2.461	2.177	2.483	2.078
$\mathbf{2 0 0 0}$	0.596	0.963	0.786	0.215	0.444	0.837	2.548	3.042	3.625
$\mathbf{2 0 0 1}$	0.029	3.158	1.210	0.653	0.346	0.672	1.709	2.409	2.937
$\mathbf{2 0 0 2}$	0.019	3.854	6.160	1.163	0.788	0.497	1.275	2.053	2.504
$\mathbf{2 0 0 3}$	0.000	1.265	5.225	4.367	1.579	0.794	0.960	0.794	3.582
$\mathbf{2 0 0 4}$	0.203	1.424	2.741	4.979	3.801	0.782	0.589	0.996	3.126
$\mathbf{2 0 0 5}$	0.107	2.532	2.201	3.136	4.548	3.321	0.838	0.584	3.506
$\mathbf{2 0 0 6}$	0.000	5.876	3.836	3.192	3.133	3.348	2.489	1.884	2.723
$\mathbf{2 0 0 7}$	0.018	0.683	3.798	4.836	2.887	2.659	2.095	2.013	3.379

Alba

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 8}$	0.000	1.072	4.516	8.401	3.497	2.229	1.597	0.618	3.675
$\mathbf{2 0 0 9}$	0.000	0.610	2.380	4.070	5.350	3.220	1.990	0.870	4.700
$\mathbf{2 0 1 0}$	0.000	0.770	2.030	2.910	3.890	4.020	2.250	0.820	4.020
$\mathbf{2 0 1 1}$	0.000	0.510	1.420	2.990	3.340	4.280	2.890	1.470	3.750
$\mathbf{2 0 1 2}$	0.000	0.540	3.030	2.520	2.900	4.390	3.960	2.230	9.050
$\mathbf{2 0 1 3}$	0.000	0.610	1.620	1.990	1.790	2.350	2.640	1.690	7.480
$\mathbf{2 0 1 4}$	0.000	0.630	3.040	3.040	2.340	3.100	2.670	1.300	7.360
$\mathbf{2 0 1 5}$	0.000	0.590	5.590	5.530	3.270	2.660	2.080	1.670	11.050
$\mathbf{2 0 1 6}$	0.010	0.070	1.250	3.150	3.290	2.400	1.400	1.190	7.640

Table 3.3.5: East Coast. TSA final assessment input settings.

Quantity	Setting	Notes
Landings	Ages 3 - 10+	
	Years 1991-2000, 2002-2015	No sampling in 2001
Survey:Clupea	Ages 3-9	
	Years 1998-2007	
Survey:Alba	Ages 3-9	
	Years 2008-2016	
Maturity	100% for age 3 onwards	
Natural mortality	Fixed at 0.15 for all ages	
Stock weights	Equal to catch weights	
F plateau	Age 8	
Recruitment	Modelled as random walk	
Annual survey CV multiplier	Adjusted according to the number of survey hauls	Allows for greater variability when fewer hauls
Survey age CV multiplier: Clupea	(1.6,1.4, 1, 1, 1, 1, 1.2)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Alba	(2.2,1, 1, 1, 1, 1.2,1.4)	Allows for greater variability at younger \& older ages
Recruitment variability	1992, 2001 \& 2006: CV multiplier $=3.0$	Allows greater variability in these years
F variability	$\begin{aligned} & \text { 1991 - 2004: CV multiplier }=2.0 \\ & \text { 2001: CV multiplier }=3.0 \end{aligned}$	Allows greater variability in F in early years when the fishery is very sporadic
Catch CV multiplier	(2.2,1.5, 1, 1, 1, 1, 1.4, 1.6)	Allows for greater variability at ages $3,4,9$ \& 10+
Down-weighting single points	Clupea 1998, age 6, cv multiplier $=3$	Survey outlier

Table 3.3.6: East Coast. Final TSA run parameter estimates.

Parameter	Notation	Description	2016
Initial fishing mortality	F(3, 1991)	Fishing mortality at age a in year y	0.015
	F(4, 1991)		0.100
	$\mathrm{F}(8,1991)$		0.351
Fishing mortality standard deviations	$\sigma_{\text {F }}$	Transitory changes in overall F	0
	σ_{u}	Persistent changes in selection (age effect in F)	0.035
	σ_{V}	Transitory changes in the year effect in F	0.283
	σ_{Y}	Persistent changes in the year effect in F	0
Measurement cv	$\mathrm{CV}_{\text {catch }}$	Coefficient of variation of catch-atage data	0.356
Recruitment		Log mean recruitment at start	2.491
	$\mathrm{S}_{\text {rw }}$	Standard deviation of random walk	0.325
	$\mathrm{CV}_{\text {rec }}$	Coefficient of variation of recruitment curve	0
Survey selectivities: Clupea	$\Phi_{\mathrm{c}}(3)$	Survey selectivity at age a	0.150
	$\Phi_{\mathrm{c}}(4)$		0.23
	$\Phi_{\mathrm{c}}(5)$		0.324
	$\Phi_{\mathrm{c}}(6)$		0.413
	$\Phi_{\text {c }}(7)$		0.567
	$\Phi_{\mathrm{c}}(8)$		0.967
	$\Phi_{\mathrm{c}}(9)$		1.589
Survey catchability standard deviations: Clupea	$\sigma_{\mathrm{c} \Omega}$	Transitory changes in survey catchability	0.107
	$\sigma_{c \beta}$	Persistent changes in survey catchability	0^{1}
Survey measurement coefficients of variation: Clupea	$\sigma_{\text {csurvey }}$	Coefficient of variation controlling gamma type dispersion	0.164
	$\eta_{\text {csurvey }}$	Coefficient of variation controlling poisson type dispersion	0.303
Survey selectivities: Alba	$\Phi_{\mathrm{a}}(3)$	Survey selectivity at age a	0.038
	$\Phi_{\mathrm{a}}(4)$		0.224
	$\Phi_{\mathrm{a}}(5)$		0.322
	$\Phi_{\mathrm{a}}(6)$		0.392
	$\Phi_{\mathrm{a}}(7)$		0.608
	$\Phi_{\mathrm{a}}(8)$		0.693
	$\Phi_{\mathrm{a}}(9)$		0.606
Survey catchability standard deviations: Alba	$\sigma_{\mathrm{a} \Omega}$	Transitory changes in survey catchability	0.157
	$\sigma_{a \beta}$	Persistent changes in survey catchability	0^{1}
Survey measurement coefficients of variation: Alba	$\sigma_{\text {asurvey }}$	Coefficient of variation controlling gamma type dispersion	0.170
	$\eta_{\text {asurvey }}$	Coefficient of variation controlling poisson type dispersion	0

[^2]Table 3.3.7: East Coast. Estimated population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 1}$	8.737	3.488	1.982	1.184	1.170	0.779	0.696	2.899
$\mathbf{1 9 9 2}$	17.561	7.415	2.748	1.510	0.865	0.806	0.495	2.283
$\mathbf{1 9 9 3}$	17.978	19.846	5.876	2.109	1.115	0.605	0.529	1.817
$\mathbf{1 9 9 4}$	14.612	15.346	16.126	4.703	1.619	0.833	0.429	1.658
$\mathbf{1 9 9 5}$	11.521	13.902	12.137	12.013	3.397	1.017	0.477	1.190
$\mathbf{1 9 9 6}$	5.536	9.615	9.488	7.288	6.412	1.586	0.382	0.630
$\mathbf{1 9 9 7}$	3.347	4.714	7.738	7.389	5.503	4.663	1.091	0.696
$\mathbf{1 9 9 8}$	2.363	2.866	3.872	6.082	5.637	4.072	3.259	1.249
$\mathbf{1 9 9 9}$	3.974	2.322	2.312	2.990	4.525	4.062	2.748	3.037
$\mathbf{2 0 0 0}$	5.694	3.366	1.779	1.628	1.961	2.844	2.275	3.246
$\mathbf{2 0 0 1}$	20.541	4.860	2.773	1.401	1.249	1.466	2.040	3.958
$\mathbf{2 0 0 2}$	24.171	17.653	4.126	2.342	1.145	1.016	1.179	4.827
$\mathbf{2 0 0 3}$	18.403	20.681	14.636	3.315	1.843	0.880	0.756	4.463
$\mathbf{2 0 0 4}$	15.971	15.718	17.081	11.634	2.564	1.396	0.636	3.781
$\mathbf{2 0 0 5}$	21.249	13.319	11.091	10.354	6.319	1.281	0.588	1.867
$\mathbf{2 0 0 6}$	32.243	18.011	10.435	8.096	7.083	4.169	0.781	1.503
$\mathbf{2 0 0 7}$	26.258	27.161	13.687	7.185	5.075	4.133	2.204	1.220
$\mathbf{2 0 0 8}$	21.613	22.146	20.690	9.493	4.606	3.074	2.258	1.888
$\mathbf{2 0 0 9}$	17.047	18.346	17.546	15.268	6.657	3.121	1.947	2.633
$\mathbf{2 0 1 0}$	15.014	14.486	14.620	13.118	10.763	4.570	2.018	2.964
$\mathbf{2 0 1 1}$	15.082	12.739	11.431	10.720	9.028	7.156	2.852	3.113
$\mathbf{2 0 1 2}$	16.839	12.858	10.341	8.833	7.936	6.540	4.972	4.145
$\mathbf{2 0 1 3}$	22.036	14.334	10.375	7.849	6.383	5.597	4.403	6.143
$\mathbf{2 0 1 4}$	22.569	18.657	11.183	7.427	5.228	4.116	3.391	6.396
$\mathbf{2 0 1 5}$	11.112	19.162	14.808	8.242	5.177	3.543	2.651	6.314
$\mathbf{2 0 1 6}$	7.086	9.381	14.676	10.108	5.159	3.114	1.979	5.016

Table 3.3.8: East Coast. Standard errors of estimates of population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 1}$	1.873	0.445	0.348	0.221	0.283	0.201	0.275	1.098
$\mathbf{1 9 9 2}$	7.384	1.595	0.352	0.272	0.167	0.205	0.138	0.711
$\mathbf{1 9 9 3}$	2.295	2.010	1.269	0.276	0.207	0.123	0.141	0.483
$\mathbf{1 9 9 4}$	2.701	1.963	1.666	1.007	0.213	0.154	0.088	0.370
$\mathbf{1 9 9 5}$	1.817	1.650	1.416	1.219	0.636	0.125	0.079	0.208
$\mathbf{1 9 9 6}$	0.801	1.138	1.084	0.873	0.782	0.344	0.080	0.143
$\mathbf{1 9 9 7}$	0.483	0.645	0.903	0.841	0.657	0.581	0.240	0.149
$\mathbf{1 9 9 8}$	0.785	0.411	0.504	0.702	0.630	0.474	0.409	0.239
$\mathbf{1 9 9 9}$	0.560	0.318	0.321	0.380	0.512	0.451	0.330	0.411
$\mathbf{2 0 0 0}$	0.602	0.472	0.223	0.216	0.239	0.326	0.285	0.440
$\mathbf{2 0 0 1}$	1.588	0.514	0.383	0.177	0.169	0.187	0.258	0.534
$\mathbf{2 0 0 2}$	2.463	1.363	0.404	0.282	0.130	0.122	0.150	0.631
$\mathbf{2 0 0 3}$	1.617	2.109	1.125	0.327	0.225	0.101	0.095	0.565
$\mathbf{2 0 0 4}$	1.279	1.381	1.710	0.922	0.261	0.175	0.078	0.478
$\mathbf{2 0 0 5}$	1.513	1.074	0.957	1.108	0.647	0.162	0.099	0.317
$\mathbf{2 0 0 6}$	2.611	1.285	0.839	0.728	0.809	0.453	0.104	0.258
$\mathbf{2 0 0 7}$	1.721	2.219	1.003	0.623	0.519	0.550	0.296	0.219
$\mathbf{2 0 0 8}$	1.590	1.444	1.725	0.748	0.436	0.352	0.346	0.315
$\mathbf{2 0 0 9}$	1.287	1.358	1.168	1.341	0.560	0.313	0.241	0.411
$\mathbf{2 0 1 0}$	1.123	1.097	1.084	0.915	1.010	0.413	0.222	0.416
$\mathbf{2 0 1 1}$	1.322	0.956	0.865	0.825	0.680	0.717	0.288	0.408
$\mathbf{2 0 1 2}$	1.388	1.128	0.775	0.686	0.632	0.518	0.520	0.475
$\mathbf{2 0 1 3}$	1.831	1.183	0.910	0.608	0.518	0.473	0.385	0.660
$\mathbf{2 0 1 4}$	2.207	1.554	0.922	0.681	0.428	0.361	0.332	0.716
$\mathbf{2 0 1 5}$	2.631	1.877	1.244	0.720	0.507	0.317	0.260	0.753
$\mathbf{2 0 1 6}$	4.924	2.232	1.529	1.011	0.563	0.378	0.234	0.735

Table 3.3.9: East Coast. Estimates of fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 1}$	0.014	0.090	0.126	0.172	0.233	0.317	0.317	0.317
$\mathbf{1 9 9 2}$	0.013	0.083	0.119	0.160	0.214	0.290	0.290	0.290
$\mathbf{1 9 9 3}$	0.009	0.057	0.084	0.112	0.148	0.200	0.200	0.200
$\mathbf{1 9 9 4}$	0.015	0.101	0.151	0.200	0.261	0.355	0.355	0.355
$\mathbf{1 9 9 5}$	0.037	0.240	0.365	0.483	0.626	0.855	0.855	0.855
$\mathbf{1 9 9 6}$	0.010	0.066	0.101	0.134	0.172	0.233	0.233	0.233
$\mathbf{1 9 9 7}$	0.009	0.059	0.092	0.122	0.156	0.210	0.210	0.210
$\mathbf{1 9 9 8}$	0.011	0.068	0.107	0.141	0.179	0.242	0.242	0.242
$\mathbf{1 9 9 9}$	0.019	0.119	0.191	0.250	0.315	0.428	0.428	0.428
$\mathbf{2 0 0 0}$	0.008	0.051	0.082	0.108	0.135	0.184	0.184	0.184
$\mathbf{2 0 0 1}$	0.005	0.032	0.054	0.071	0.087	0.119	0.119	0.119
$\mathbf{2 0 0 2}$	0.006	0.041	0.068	0.090	0.110	0.149	0.149	0.149
$\mathbf{2 0 0 3}$	0.008	0.048	0.082	0.109	0.132	0.177	0.177	0.177
$\mathbf{2 0 0 4}$	0.031	0.194	0.340	0.455	0.544	0.720	0.720	0.720
$\mathbf{2 0 0 5}$	0.015	0.093	0.165	0.224	0.264	0.345	0.345	0.345
$\mathbf{2 0 0 6}$	0.021	0.129	0.231	0.316	0.372	0.482	0.482	0.482
$\mathbf{2 0 0 7}$	0.020	0.120	0.217	0.296	0.346	0.445	0.445	0.445
$\mathbf{2 0 0 8}$	0.014	0.083	0.151	0.207	0.240	0.307	0.307	0.307
$\mathbf{2 0 0 9}$	0.013	0.078	0.143	0.197	0.227	0.288	0.288	0.288
$\mathbf{2 0 1 0}$	0.014	0.087	0.163	0.226	0.259	0.324	0.324	0.324
$\mathbf{2 0 1 1}$	0.010	0.058	0.110	0.152	0.174	0.216	0.216	0.216
$\mathbf{2 0 1 2}$	0.011	0.066	0.127	0.175	0.199	0.247	0.247	0.247
$\mathbf{2 0 1 3}$	0.016	0.094	0.184	0.253	0.287	0.352	0.352	0.352
$\mathbf{2 0 1 4}$	0.013	0.079	0.155	0.214	0.240	0.292	0.292	0.292
$\mathbf{2 0 1 5}$	0.020	0.118	0.234	0.322	0.363	0.437	0.437	0.437
$\mathbf{2 0 1 6}$	0.014	0.084	0.167	0.229	0.258	0.311	0.311	0.311

Table 3.3.10: East Coast. Standard errors of estimates of log fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 1}$	0.004	0.026	0.036	0.049	0.066	0.090	0.090	0.090
$\mathbf{1 9 9 2}$	0.003	0.023	0.033	0.044	0.059	0.080	0.080	0.080
$\mathbf{1 9 9 3}$	0.002	0.016	0.024	0.032	0.042	0.057	0.057	0.057
$\mathbf{1 9 9 4}$	0.004	0.026	0.038	0.050	0.066	0.090	0.090	0.090
$\mathbf{1 9 9 5}$	0.008	0.050	0.074	0.097	0.127	0.177	0.177	0.177
$\mathbf{1 9 9 6}$	0.003	0.018	0.027	0.036	0.046	0.063	0.063	0.063
$\mathbf{1 9 9 7}$	0.003	0.016	0.025	0.032	0.041	0.056	0.056	0.056
$\mathbf{1 9 9 8}$	0.003	0.018	0.028	0.037	0.047	0.063	0.063	0.063
$\mathbf{1 9 9 9}$	0.005	0.029	0.044	0.058	0.072	0.098	0.098	0.098
$\mathbf{2 0 0 0}$	0.002	0.015	0.025	0.032	0.040	0.055	0.055	0.055
$\mathbf{2 0 0 1}$	0.004	0.025	0.042	0.055	0.068	0.093	0.093	0.093
$\mathbf{2 0 0 2}$	0.002	0.012	0.019	0.026	0.031	0.042	0.042	0.042
$\mathbf{2 0 0 3}$	0.002	0.014	0.024	0.031	0.038	0.050	0.050	0.050
$\mathbf{2 0 0 4}$	0.007	0.043	0.071	0.094	0.111	0.148	0.148	0.148
$\mathbf{2 0 0 5}$	0.003	0.018	0.030	0.041	0.048	0.063	0.063	0.063
$\mathbf{2 0 0 6}$	0.004	0.025	0.040	0.055	0.064	0.082	0.082	0.082
$\mathbf{2 0 0 7}$	0.004	0.023	0.038	0.052	0.060	0.077	0.077	0.077
$\mathbf{2 0 0 8}$	0.003	0.017	0.028	0.038	0.044	0.056	0.056	0.056
$\mathbf{2 0 0 9}$	0.003	0.016	0.027	0.037	0.042	0.053	0.053	0.053
$\mathbf{2 0 1 0}$	0.003	0.018	0.030	0.042	0.048	0.059	0.059	0.059
$\mathbf{2 0 1 1}$	0.002	0.012	0.021	0.029	0.033	0.041	0.041	0.041
$\mathbf{2 0 1 2}$	0.003	0.014	0.025	0.034	0.038	0.046	0.046	0.046
$\mathbf{2 0 1 3}$	0.004	0.020	0.035	0.047	0.053	0.063	0.063	0.063
$\mathbf{2 0 1 4}$	0.003	0.017	0.031	0.042	0.047	0.055	0.055	0.055
$\mathbf{2 0 1 5}$	0.005	0.026	0.047	0.064	0.072	0.083	0.083	0.083
$\mathbf{2 0 1 6}$	0.005	0.026	0.051	0.069	0.078	0.095	0.095	0.095

Table 3.3.11: East Coast. Stock summary from the final TSA run. Catch and Mean F in 2016 are model projections.

	Catch (t)	Catch estimate (t)	SSB (t)	Recruitment $(1000 \mathrm{~s})$	Mean $\mathrm{F}(4-6)$
$\mathbf{1 9 9 1}$	545	491	4108	8737	0.129
$\mathbf{1 9 9 2}$	340	403	5066	17561	0.120
$\mathbf{1 9 9 3}$	640	467	7892	17978	0.084
$\mathbf{1 9 9 4}$	1866	1018	8821	14612	0.151
$\mathbf{1 9 9 5}$	1952	2439	9163	11521	0.363
$\mathbf{1 9 9 6}$	696	726	7185	5536	0.100
$\mathbf{1 9 9 7}$	737	735	6660	3347	0.091
$\mathbf{1 9 9 8}$	1032	945	6658	2363	0.105
$\mathbf{1 9 9 9}$	1866	1166	5099	3974	0.187
$\mathbf{2 0 0 0}$	744	437	4347	5694	0.081
$\mathbf{2 0 0 1}$	313	266	6271	20541	0.052
$\mathbf{2 0 0 2}$	478	520	10092	24171	0.066
$\mathbf{2 0 0 3}$	830	686	10721	18403	0.080
$\mathbf{2 0 0 4}$	2445	2777	10855	15971	0.330
$\mathbf{2 0 0 5}$	1580	1390	10310	21249	0.161
$\mathbf{2 0 0 6}$	1806	1878	12244	32243	0.225
$\mathbf{2 0 0 7}$	2745	2325	14798	26258	0.211
$\mathbf{2 0 0 8}$	1930	1805	15567	21613	0.147
$\mathbf{2 0 0 9}$	1640	1779	14304	17047	0.139
$\mathbf{2 0 1 0}$	1792	1944	12919	15014	0.159
$\mathbf{2 0 1 1}$	865	1298	11961	15082	0.107
$\mathbf{2 0 1 2}$	1500	1622	13226	16839	0.123
$\mathbf{2 0 1 3}$	2269	2254	13803	22036	0.177
$\mathbf{2 0 1 4}$	1511	1669	12571	22569	0.149
$\mathbf{2 0 1 5}$	2287	2301	11484	11112	0.225
$\mathbf{2 0 1 6}$	NA	1593	9728	7086	0.160

Table 3.5.1: North East. Total catch-at-age numbers (in thousands).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 4}$	0	27	68	82	187	384	471	361	393
$\mathbf{1 9 8 5}$	3	29	32	90	140	333	411	376	521
$\mathbf{1 9 8 6}$	5	97	145	80	161	427	488	433	1099
$\mathbf{1 9 8 7}$	0	100	274	214	212	428	515	310	796
$\mathbf{1 9 8 8}$	0	104	659	541	190	181	348	330	1838
$\mathbf{1 9 8 9}$	0	39	218	464	618	759	697	542	1108
$\mathbf{1 9 9 0}$	244	316	337	553	660	601	613	526	1094
$\mathbf{1 9 9 1}$	134	338	389	195	130	140	144	154	481
$\mathbf{1 9 9 2}$	15	272	2703	2018	880	487	593	441	2798
$\mathbf{1 9 9 3}$	17	232	2710	2271	1097	570	346	181	1216
$\mathbf{1 9 9 4}$	14	375	2686	6766	3243	1249	486	180	1195
$\mathbf{1 9 9 5}$	10	470	3210	7334	5677	1869	700	389	959
$\mathbf{1 9 9 6}$	9	166	1134	3800	5910	4336	1826	567	948
$\mathbf{1 9 9 7}$	3	130	1143	3091	4781	4117	1919	475	511
$\mathbf{1 9 9 8}$	0	203	299	616	1186	2063	1489	1106	1080
$\mathbf{1 9 9 9}$	4	213	512	795	1353	1898	2102	1183	1127
$\mathbf{2 0 0 0}$	1	528	1669	793	658	896	1297	1375	1565
$\mathbf{2 0 0 1}$	3	102	1283	1017	531	423	899	744	1821
$\mathbf{2 0 0 2}$	0	200	1533	888	669	340	271	200	328
$\mathbf{2 0 0 3}$	0	24	1051	3319	2926	1908	1076	497	1269
$\mathbf{2 0 0 4}$	1	208	1594	2411	2048	1326	767	403	930
$\mathbf{2 0 0 5}$	9	299	861	1391	1459	2484	1188	702	1781
$\mathbf{2 0 0 6}$	0	559	570	1173	1288	1533	935	645	1528
$\mathbf{2 0 0 7}$	1	282	2120	1722	1008	1019	616	250	336
$\mathbf{2 0 0 8}$	6	481	1150	2364	1358	1011	599	277	360
$\mathbf{2 0 0 9}$	31	203	1632	3843	2422	999	873	750	573
$\mathbf{2 0 1 0}$	0	203	1281	1553	1629	1169	622	361	354
$\mathbf{2 0 1 1}$	0	0	127	452	1222	1181	819	503	166
$\mathbf{2 0 1 2}$	0	5	343	1540	1870	1488	939	491	783
$\mathbf{2 0 1 3}$	0	176	1002	2165	2552	2410	2146	1263	1901
$\mathbf{2 0 1 4}$	0	41	745	3052	2726	1540	1250	916	659
$\mathbf{2 0 1 5}$	0	16	228	1567	2963	2332	1247	807	1246

Table 3.5.2: North East. Mean weights-at-age (total live weight) (kg) in total catch (also used for stock weights).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 4}$	0.106	0.107	0.150	0.157	0.170	0.182	0.202	0.197	0.211
$\mathbf{1 9 8 5}$	0.100	0.118	0.141	0.143	0.160	0.174	0.189	0.197	0.217
$\mathbf{1 9 8 6}$	0.112	0.131	0.156	0.180	0.197	0.202	0.210	0.219	0.239
$\mathbf{1 9 8 7}$	0.106	0.140	0.149	0.171	0.194	0.217	0.239	0.235	0.245
$\mathbf{1 9 8 8}$	0.106	0.110	0.139	0.164	0.166	0.171	0.163	0.185	0.191
$\mathbf{1 9 8 9}$	0.112	0.113	0.146	0.153	0.165	0.185	0.201	0.210	0.231
$\mathbf{1 9 9 0}$	0.131	0.155	0.157	0.173	0.188	0.196	0.205	0.217	0.243
$\mathbf{1 9 9 1}$	0.133	0.142	0.149	0.178	0.202	0.215	0.224	0.240	0.251
$\mathbf{1 9 9 2}$	0.121	0.126	0.135	0.157	0.176	0.190	0.207	0.221	0.230
$\mathbf{1 9 9 3}$	0.114	0.126	0.140	0.169	0.194	0.209	0.222	0.238	0.264
$\mathbf{1 9 9 4}$	0.123	0.129	0.134	0.146	0.170	0.190	0.198	0.211	0.230
$\mathbf{1 9 9 5}$	0.103	0.123	0.139	0.152	0.170	0.197	0.205	0.215	0.241
$\mathbf{1 9 9 6}$	0.124	0.137	0.145	0.158	0.175	0.198	0.214	0.233	0.255
$\mathbf{1 9 9 7}$	0.114	0.120	0.136	0.148	0.161	0.174	0.186	0.206	0.225
$\mathbf{1 9 9 8}$	0.114	0.144	0.151	0.165	0.175	0.189	0.207	0.214	0.227
$\mathbf{1 9 9 9}$	0.100	0.119	0.149	0.162	0.176	0.189	0.200	0.215	0.240
$\mathbf{2 0 0 0}$	0.118	0.138	0.158	0.192	0.201	0.213	0.224	0.235	0.258
$\mathbf{2 0 0 1}$	0.100	0.119	0.145	0.165	0.183	0.196	0.204	0.221	0.243
$\mathbf{2 0 0 2}$	0.106	0.131	0.143	0.168	0.195	0.211	0.216	0.227	0.246
$\mathbf{2 0 0 3}$	0.109	0.114	0.137	0.152	0.162	0.178	0.192	0.211	0.219
$\mathbf{2 0 0 4}$	0.129	0.128	0.145	0.169	0.181	0.193	0.206	0.207	0.229
$\mathbf{2 0 0 5}$	0.093	0.127	0.139	0.183	0.202	0.208	0.218	0.220	0.261
$\mathbf{2 0 0 6}$	0.111	0.136	0.138	0.163	0.182	0.198	0.210	0.220	0.257
$\mathbf{2 0 0 7}$	0.111	0.130	0.146	0.168	0.179	0.211	0.235	0.253	0.285
$\mathbf{2 0 0 8}$	0.152	0.173	0.152	0.160	0.186	0.217	0.237	0.261	0.292
$\mathbf{2 0 0 9}$	0.127	0.138	0.157	0.173	0.198	0.209	0.228	0.228	0.255
$\mathbf{2 0 1 0}$	0.139	0.149	0.155	0.158	0.171	0.188	0.209	0.232	0.251
$\mathbf{2 0 1 1}$	0.139	0.149	0.144	0.150	0.163	0.178	0.199	0.219	0.255
$\mathbf{2 0 1 2}$	0.139	0.111	0.132	0.142	0.159	0.178	0.199	0.211	0.243
$\mathbf{2 0 1 3}$	0.139	0.133	0.146	0.160	0.182	0.205	0.230	0.254	0.255
$\mathbf{2 0 1 4}$	0.139	0.135	0.140	0.145	0.161	0.190	0.197	0.219	0.251
$\mathbf{2 0 1 5}$	0.139	0.129	0.138	0.140	0.158	0.176	0.188	0.221	0.226

Table 3.5.3: North East. Research-vessel survey data. Catch rates (numbers hour ${ }^{1}$ metre ${ }^{-1}$) by age class and year.

Clupea

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 7}$	0.109	0.995	2.332	3.747	6.002	7.409	4.338	1.314	2.457
$\mathbf{1 9 9 8}$	0.121	1.281	1.324	1.767	1.585	3.182	4.390	4.135	3.631
$\mathbf{1 9 9 9}$	0.081	2.408	2.609	1.562	1.296	2.934	3.477	3.444	3.363
$\mathbf{2 0 0 0}$	0.096	2.774	4.929	2.175	1.205	1.852	2.519	2.774	2.409
$\mathbf{2 0 0 1}$	0.017	1.669	4.034	3.854	1.049	1.658	2.173	2.115	2.579
$\mathbf{2 0 0 2}$	0.041	4.397	7.120	4.974	2.219	1.505	1.871	2.160	2.164
$\mathbf{2 0 0 3}$	0.106	1.059	5.831	8.321	2.853	3.559	1.364	0.812	4.434
$\mathbf{2 0 0 4}$	0.466	1.620	2.642	5.229	4.052	2.116	1.052	1.100	2.456
$\mathbf{2 0 0 5}$	0.155	2.499	2.774	2.909	4.662	4.036	2.093	1.422	1.763
$\mathbf{2 0 0 6}$	0.005	3.342	4.996	4.501	3.527	4.461	3.092	2.653	3.507
$\mathbf{2 0 0 7}$	0.038	0.933	4.203	4.306	3.173	2.736	2.299	1.813	2.579

Alba

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 8}$	0.053	1.426	5.391	7.577	4.518	3.501	2.644	1.284	3.942
$\mathbf{2 0 0 9}$	0.030	1.910	3.540	5.780	5.360	3.450	2.530	1.160	5.550
$\mathbf{2 0 1 0}$	0.010	1.840	3.470	5.460	4.840	4.280	2.560	0.850	4.650
$\mathbf{2 0 1 1}$	0.010	1.230	4.170	5.600	4.740	5.190	3.170	1.480	5.100
$\mathbf{2 0 1 2}$	0.010	0.800	5.350	5.810	4.650	5.370	4.040	2.100	6.680
$\mathbf{2 0 1 3}$	0.010	0.720	5.560	6.240	3.540	3.550	2.930	1.760	8.660
$\mathbf{2 0 1 4}$	0.010	0.980	4.770	8.340	5.940	4.460	2.920	1.340	5.420
$\mathbf{2 0 1 5}$	0.000	0.490	6.240	7.630	8.180	5.700	3.020	1.490	8.750
$\mathbf{2 0 1 6}$	0.000	0.100	2.050	4.400	5.980	5.780	3.010	1.580	5.440

Table 3.5.4: North East. TSA final assessment input settings.

Quantity	Setting	Notes
Landings	Ages 3 - 10+	
	Years 1984-2015	
Survey:Clupea	Ages 3-9	
	Years 1997-2007	
Survey:Alba	Ages 3-9	
	Years 2008-2016	
Maturity	100 \% for age 3 onwards	
Natural mortality	Fixed at 0.15 for all ages	
Stock weights	Equal to catch weights	
F plateau	Age 8	
Recruitment	Modelled as random walk	
Annual survey CV multiplier	Adjusted according to the number of survey hauls	Allows for greater variability when fewer hauls
Survey age CV multiplier: Clupea	(1.4,1.2,1,1,1,1,1.2)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Alba	(2.2,1, 1, 1, 1, 1.2,1.5)	Allows for greater variability at younger \& older ages
Recruitment variability	1990-1997: CV multiplier $=3.0$	Allows greater variability to capture big increase in these years
Catch CV multiplier	(1.8,1.2,1,1,1,1,1,1.3)	Allows for greater variability at ages 3,4 \& 10+

Table 3.5.5: North East. Final TSA run parameter estimates.

Parameter	Notation	Description	2016
Initial fishing mortality	F(3, 1984)	Fishing mortality at age a in year y	0.005
	F(4, 1984)		0.026
	F(8, 1984)		0.110
Fishing mortality standard deviations	σ_{F}	Transitory changes in overall F	0
	σ_{u}	Persistent changes in selection (age effect in F)	0.048
	σ_{V}	Transitory changes in the year effect in F	0.324
	σ_{Y}	Persistent changes in the year effect in F	0.257
Measurement cv	$\mathrm{cv}_{\text {catch }}$	Coefficient of variation of catch-atage data	0.385
Recruitment		Log mean recruitment at start	2.607
	$\mathrm{S}_{\text {rw }}$	Standard deviation of random walk	0.310
	$\mathrm{CV}_{\text {rec }}$	Coefficient of variation of recruitment curve	0
Survey selectivities: Clupea	$\Phi_{\mathrm{c}}(3)$	Survey selectivity at age a	0.161
	$\Phi_{\mathrm{c}}(4)$		0.372
	$\Phi_{\mathrm{c}}(5)$		0.53
	$\Phi_{\mathrm{c}}(6)$		0.606
	$\Phi_{\mathrm{c}}(7)$		0.83
	$\Phi_{\mathrm{c}}(8)$		1.094
	$\Phi_{\mathrm{c}}(9)$		1.355
Survey catchability standard deviations: Clupea	$\sigma_{\mathrm{c} \Omega}$	Transitory changes in survey catchability	0.102
	$\sigma_{c \beta}$	Persistent changes in survey catchability	0^{1}
Survey measurement coefficients of variation: Clupea	$\sigma_{\text {csurvey }}$	Coefficient of variation controlling gamma type dispersion	0.359
	$\eta_{\text {csurvey }}$	Coefficient of variation controlling poisson type dispersion	0.006
Survey selectivities: Alba	$\Phi_{\mathrm{a}}(3)$	Survey selectivity at age a	0.071
	$\Phi_{\mathrm{a}}(4)$		0.337
	$\Phi_{\mathrm{a}}(5)$		0.562
	$\Phi_{\mathrm{a}}(6)$		0.650
	$\Phi_{\mathrm{a}}(7)$		0.851
	$\Phi_{\mathrm{a}}(8)$		0.870
	$\Phi_{\mathrm{a}}(9)$		0.668
Survey catchability standard deviations: Alba	$\sigma_{\mathrm{a} \Omega}$	Transitory changes in survey catchability	0.114
	$\sigma_{a \beta}$	Persistent changes in survey catchability	0^{1}
Survey measurement coefficients of variation: Alba	$\sigma_{\text {asurvey }}$	Coefficient of variation controlling gamma type dispersion	0
	$\eta_{\text {asurvey }}$	Coefficient of variation controlling poisson type dispersion	0.278

[^3]Table 3.5.6: North East. Estimated population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 4}$	4.971	4.915	4.561	5.264	6.371	6.000	4.618	4.714
$\mathbf{1 9 8 5}$	5.452	4.269	4.148	3.814	4.355	5.182	4.767	7.415
$\mathbf{1 9 8 6}$	7.239	5.048	3.614	3.466	3.147	3.525	4.109	9.652
$\mathbf{1 9 8 7}$	6.846	6.198	4.678	3.663	2.792	2.448	2.671	10.435
$\mathbf{1 9 8 8}$	4.451	5.849	5.127	3.780	2.891	2.105	1.778	9.526
$\mathbf{1 9 8 9}$	4.421	3.802	4.812	4.095	2.967	2.158	1.509	8.121
$\mathbf{1 9 9 0}$	14.870	5.671	3.036	3.606	2.947	2.000	1.354	6.118
$\mathbf{1 9 9 1}$	23.149	12.623	4.561	2.260	2.597	2.002	1.293	4.859
$\mathbf{1 9 9 2}$	38.280	19.774	10.405	3.669	1.741	1.937	1.458	4.524
$\mathbf{1 9 9 3}$	41.539	34.418	15.105	7.055	2.395	1.069	1.087	3.358
$\mathbf{1 9 9 4}$	37.937	35.286	27.483	11.133	4.954	1.615	0.701	2.902
$\mathbf{1 9 9 5}$	22.627	31.778	27.238	19.124	7.357	3.035	0.944	2.123
$\mathbf{1 9 9 6}$	14.867	19.048	24.034	18.159	11.871	4.225	1.607	1.635
$\mathbf{1 9 9 7}$	7.806	10.748	14.394	16.014	11.198	6.537	2.123	1.647
$\mathbf{1 9 9 8}$	7.525	6.512	8.265	9.814	10.160	6.473	3.467	2.015
$\mathbf{1 9 9 9}$	10.410	6.384	5.173	6.021	6.784	6.573	3.935	3.351
$\mathbf{2 0 0 0}$	14.423	8.824	5.050	3.735	4.126	4.350	3.958	4.418
$\mathbf{2 0 0 1}$	17.452	12.281	7.114	3.727	2.614	2.738	2.740	5.280
$\mathbf{2 0 0 2}$	18.358	14.876	9.985	5.377	2.695	1.800	1.813	5.311
$\mathbf{2 0 0 3}$	17.421	15.679	12.284	7.810	4.079	1.974	1.282	5.090
$\mathbf{2 0 0 4}$	1.047	14.709	11.942	7.999	4.615	2.153	0.967	3.123
$\mathbf{2 0 0 5}$	14.990	11.072	11.662	8.458	5.306	2.827	1.251	2.376
$\mathbf{2 0 0 6}$	19.527	12.656	8.550	7.850	5.244	2.973	1.480	1.908
$\mathbf{2 0 0 7}$	19.740	16.557	10.025	6.099	5.245	3.242	1.744	1.997
$\mathbf{2 0 0 8}$	17.863	16.815	13.428	7.495	4.353	3.531	2.103	2.434
$\mathbf{2 0 0 9}$	16.734	15.235	13.709	10.116	5.398	2.980	2.337	3.008
$\mathbf{2 0 1 0}$	17.410	14.247	12.235	9.902	6.852	3.439	1.815	3.263
$\mathbf{2 0 1 1}$	20.785	14.893	11.785	9.413	7.282	4.838	2.363	3.496
$\mathbf{2 0 1 2}$	23.227	17.776	12.414	9.270	7.121	5.330	3.463	4.200
$\mathbf{2 0 1 3}$	18.706	19.832	14.683	9.599	6.829	5.045	3.681	5.293
$\mathbf{2 0 1 4}$	15.377	15.869	15.833	10.389	6.183	4.080	2.862	5.110
$\mathbf{2 0 1 5}$	7.993	13.107	12.961	11.877	7.288	4.101	2.610	5.109
$\mathbf{2 0 1 6}$	5.244	6.815	10.723	9.736	8.348	4.841	2.628	4.956

Table 3.5.7: North East. Standard errors of estimates of population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 4}$	1.572	0.673	0.610	0.968	1.418	1.343	1.180	1.561
$\mathbf{1 9 8 5}$	1.470	1.349	0.570	0.513	0.806	1.162	1.075	1.611
$\mathbf{1 9 8 6}$	1.568	1.164	1.140	0.480	0.429	0.667	0.941	1.755
$\mathbf{1 9 8 7}$	1.372	1.341	0.781	0.415	0.393	0.349	0.523	1.813
$\mathbf{1 9 8 8}$	1.208	1.172	1.113	0.644	0.353	0.314	0.279	1.678
$\mathbf{1 9 8 9}$	2.232	1.033	0.973	0.917	0.519	0.284	0.245	1.463
$\mathbf{1 9 9 0}$	2.544	1.123	0.832	0.778	0.718	0.393	0.221	1.206
$\mathbf{1 9 9 1}$	4.612	2.168	0.918	0.670	0.618	0.539	0.287	1.002
$\mathbf{1 9 9 2}$	7.853	3.947	1.817	0.763	0.551	0.498	0.423	0.952
$\mathbf{1 9 9 3}$	4.905	4.880	3.056	1.364	0.542	0.354	0.307	0.799
$\mathbf{1 9 9 4}$	4.523	4.166	3.945	2.403	1.052	0.397	0.247	0.734
$\mathbf{1 9 9 5}$	2.701	3.573	3.196	2.875	1.640	0.675	0.233	0.541
$\mathbf{1 9 9 6}$	4.759	2.258	2.661	2.191	1.891	0.967	0.384	0.419
$\mathbf{1 9 9 7}$	0.862	1.283	1.667	1.785	1.435	1.148	0.544	0.440
$\mathbf{1 9 9 8}$	0.766	0.632	0.977	1.165	1.195	0.872	0.644	0.498
$\mathbf{1 9 9 9}$	1.030	0.651	0.506	0.723	0.833	0.816	0.573	0.665
$\mathbf{2 0 0 0}$	1.306	0.872	0.511	0.364	0.492	0.542	0.528	0.727
$\mathbf{2 0 0 1}$	1.950	1.107	0.679	0.364	0.250	0.319	0.347	0.760
$\mathbf{2 0 0 2}$	1.935	1.656	0.880	0.511	0.263	0.177	0.221	0.730
$\mathbf{2 0 0 3}$	1.756	1.649	1.342	0.698	0.396	0.200	0.134	0.674
$\mathbf{2 0 0 4}$	1.210	1.472	1.193	0.852	0.450	0.235	0.117	0.454
$\mathbf{2 0 0 5}$	1.175	1.023	1.140	0.855	0.579	0.301	0.150	0.366
$\mathbf{2 0 0 6}$	1.300	0.990	0.767	0.765	0.550	0.349	0.183	0.304
$\mathbf{2 0 0 7}$	1.288	1.104	0.779	0.549	0.527	0.365	0.229	0.325
$\mathbf{2 0 0 8}$	1.205	1.100	0.895	0.592	0.402	0.369	0.260	0.384
$\mathbf{2 0 0 9}$	1.221	1.029	0.897	0.693	0.443	0.290	0.268	0.446
$\mathbf{2 0 1 0}$	1.312	1.041	0.814	0.639	0.492	0.302	0.205	0.472
$\mathbf{2 0 1 1}$	1.410	1.123	0.845	0.615	0.475	0.360	0.223	0.475
$\mathbf{2 0 1 2}$	1.398	1.207	0.929	0.667	0.477	0.367	0.282	0.502
$\mathbf{2 0 1 3}$	1.376	1.196	1.003	0.734	0.517	0.375	0.294	0.583
$\mathbf{2 0 1 4}$	1.596	1.170	0.961	0.731	0.494	0.356	0.277	0.632
$\mathbf{2 0 1 5}$	1.730	1.364	0.965	0.782	0.563	0.362	0.262	0.685
$\mathbf{2 0 1 6}$	2.812	1.479	1.147	0.804	0.678	0.467	0.287	0.734

Table 3.5.8: North East. Estimates of fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 4}$	0.004	0.019	0.027	0.039	0.058	0.081	0.081	0.081
$\mathbf{1 9 8 5}$	0.004	0.020	0.030	0.042	0.063	0.085	0.085	0.085
$\mathbf{1 9 8 6}$	0.006	0.031	0.048	0.066	0.101	0.133	0.133	0.133
$\mathbf{1 9 8 7}$	0.008	0.041	0.065	0.088	0.133	0.173	0.173	0.173
$\mathbf{1 9 8 8}$	0.009	0.046	0.074	0.098	0.145	0.189	0.189	0.189
$\mathbf{1 9 8 9}$	0.015	0.078	0.131	0.172	0.251	0.324	0.324	0.324
$\mathbf{1 9 9 0}$	0.014	0.073	0.128	0.166	0.236	0.301	0.301	0.301
$\mathbf{1 9 9 1}$	0.008	0.042	0.076	0.099	0.137	0.173	0.173	0.173
$\mathbf{1 9 9 2}$	0.022	0.121	0.227	0.293	0.394	0.493	0.493	0.493
$\mathbf{1 9 9 3}$	0.014	0.078	0.151	0.194	0.258	0.319	0.319	0.319
$\mathbf{1 9 9 4}$	0.019	0.107	0.216	0.276	0.363	0.445	0.445	0.445
$\mathbf{1 9 9 5}$	0.023	0.127	0.259	0.335	0.437	0.534	0.534	0.534
$\mathbf{1 9 9 6}$	0.023	0.126	0.258	0.338	0.443	0.540	0.540	0.540
$\mathbf{1 9 9 7}$	0.020	0.114	0.236	0.309	0.404	0.492	0.492	0.492
$\mathbf{1 9 9 8}$	0.014	0.081	0.167	0.219	0.286	0.350	0.350	0.350
$\mathbf{1 9 9 9}$	0.014	0.082	0.171	0.224	0.291	0.355	0.355	0.355
$\mathbf{2 0 0 0}$	0.013	0.073	0.153	0.199	0.258	0.314	0.314	0.314
$\mathbf{2 0 0 1}$	0.011	0.061	0.131	0.171	0.219	0.265	0.265	0.265
$\mathbf{2 0 0 2}$	0.007	0.043	0.094	0.124	0.159	0.188	0.188	0.188
$\mathbf{2 0 0 3}$	0.022	0.126	0.286	0.379	0.490	0.567	0.567	0.567
$\mathbf{2 0 0 4}$	0.015	0.086	0.196	0.262	0.341	0.395	0.395	0.395
$\mathbf{2 0 0 5}$	0.018	0.105	0.243	0.325	0.428	0.499	0.499	0.499
$\mathbf{2 0 0 6}$	0.014	0.080	0.188	0.252	0.331	0.386	0.386	0.386
$\mathbf{2 0 0 7}$	0.010	0.059	0.141	0.189	0.246	0.284	0.284	0.284
$\mathbf{2 0 0 8}$	0.010	0.054	0.132	0.179	0.229	0.263	0.263	0.263
$\mathbf{2 0 0 9}$	0.012	0.070	0.175	0.239	0.301	0.346	0.346	0.346
$\mathbf{2 0 1 0}$	0.008	0.045	0.113	0.158	0.199	0.227	0.227	0.227
$\mathbf{2 0 1 1}$	0.006	0.035	0.091	0.129	0.162	0.185	0.185	0.185
$\mathbf{2 0 1 2}$	0.007	0.041	0.107	0.155	0.194	0.221	0.221	0.221
$\mathbf{2 0 1 3}$	0.014	0.074	0.195	0.288	0.363	0.417	0.417	0.417
$\mathbf{2 0 1 4}$	0.010	0.052	0.139	0.207	0.262	0.300	0.300	0.300
$\mathbf{2 0 1 5}$	0.010	0.052	0.138	0.205	0.263	0.299	0.299	0.299
$\mathbf{2 0 1 6}$	0.010	0.052	0.138	0.205	0.263	0.301	0.301	0.301

Table 3.5.9: North East. Standard errors of estimates of log fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 4}$	0.001	0.004	0.007	0.009	0.014	0.019	0.019	0.019
$\mathbf{1 9 8 5}$	0.001	0.005	0.007	0.010	0.016	0.021	0.021	0.021
$\mathbf{1 9 8 6}$	0.002	0.008	0.012	0.0017	0.025	0.033	0.033	0.033
$\mathbf{1 9 8 7}$	0.002	0.011	0.016	0.023	0.034	0.044	0.044	0.044
$\mathbf{1 9 8 8}$	0.002	0.011	0.018	0.024	0.036	0.046	0.046	0.046
$\mathbf{1 9 8 9}$	0.004	0.019	0.031	0.044	0.060	0.077	0.077	0.077
$\mathbf{1 9 9 0}$	0.003	0.018	0.030	0.039	0.056	0.071	0.071	0.071
$\mathbf{1 9 9 1}$	0.002	0.010	0.019	0.024	0.033	0.042	0.042	0.042
$\mathbf{1 9 9 2}$	0.005	0.027	0.050	0.064	0.086	0.107	0.107	0.107
$\mathbf{1 9 9 3}$	0.004	0.018	0.034	0.044	0.058	0.072	0.072	0.072
$\mathbf{1 9 9 4}$	0.005	0.024	0.047	0.060	0.078	0.096	0.096	0.096
$\mathbf{1 9 9 5}$	0.005	0.027	0.053	0.069	0.089	0.111	0.111	0.111
$\mathbf{1 9 9 6}$	0.005	0.027	0.052	0.068	0.089	0.109	0.109	0.109
$\mathbf{1 9 9 7}$	0.005	0.025	0.048	0.062	0.081	0.099	0.099	0.099
$\mathbf{1 9 9 8}$	0.004	0.018	0.036	0.047	0.061	0.074	0.074	0.074
$\mathbf{1 9 9 9}$	0.004	0.018	0.037	0.048	0.062	0.075	0.075	0.075
$\mathbf{2 0 0 0}$	0.003	0.016	0.033	0.043	0.055	0.066	0.066	0.066
$\mathbf{2 0 0 1}$	0.003	0.014	0.029	0.038	0.049	0.058	0.058	0.058
$\mathbf{2 0 0 2}$	0.002	0.011	0.022	0.029	0.038	0.043	0.043	0.043
$\mathbf{2 0 0 3}$	0.005	0.025	0.053	0.069	0.088	0.100	0.100	0.100
$\mathbf{2 0 0 4}$	0.004	0.019	0.041	0.054	0.070	0.081	0.081	0.081
$\mathbf{2 0 0 5}$	0.005	0.022	0.049	0.064	0.084	0.097	0.097	0.097
$\mathbf{2 0 0 6}$	0.004	0.018	0.040	0.053	0.069	0.080	0.080	0.080
$\mathbf{2 0 0 7}$	0.003	0.014	0.031	0.042	0.054	0.062	0.062	0.062
$\mathbf{2 0 0 8}$	0.003	0.013	0.030	0.040	0.051	0.058	0.058	0.058
$\mathbf{2 0 0 9}$	0.003	0.016	0.037	0.050	0.063	0.073	0.073	0.073
$\mathbf{2 0 1 0}$	0.002	0.011	0.026	0.035	0.045	0.050	0.050	0.050
$\mathbf{2 0 1 1}$	0.002	0.009	0.021	0.030	0.038	0.042	0.042	0.042
$\mathbf{2 0 1 2}$	0.002	0.010	0.025	0.036	0.045	0.050	0.050	0.050
$\mathbf{2 0 1 3}$	0.004	0.017	0.042	0.059	0.074	0.083	0.083	0.083
$\mathbf{2 0 1 4}$	0.003	0.013	0.032	0.047	0.059	0.066	0.066	0.066
$\mathbf{2 0 1 5}$	0.003	0.014	0.034	0.050	0.064	0.070	0.070	0.070
$\mathbf{2 0 1 6}$	0.005	0.025	0.064	0.094	0.121	0.139	0.139	0.139

Table 3.5.10: North East. Stock summary from the final TSA run. Catch estimate and Mean F in 2016 are model forecasts.

	Catch (t)	Catch estimate (t)	SSB (t)	Recruitment (1000s)	Mean F(4-6)
$\mathbf{1 9 8 4}$	377	345	7153	4971	0.028
$\mathbf{1 9 8 5}$	366	357	6726	5452	0.030
$\mathbf{1 9 8 6}$	628	602	7654	7239	0.049
$\mathbf{1 9 8 7}$	616	759	7767	6846	0.065
$\mathbf{1 9 8 8}$	723	600	5755	4451	0.072
$\mathbf{1 9 8 9}$	859	1007	5640	4421	0.127
$\mathbf{1 9 9 0}$	945	874	7165	14870	0.122
$\mathbf{1 9 9 1}$	387	542	8976	23149	0.073
$\mathbf{1 9 9 2}$	1827	1572	11853	38280	0.214
$\mathbf{1 9 9 3}$	1565	1406	15874	41539	0.141
$\mathbf{1 9 9 4}$	2588	2315	17556	37937	0.200
$\mathbf{1 9 9 5}$	3413	3273	17376	22627	0.240
$\mathbf{1 9 9 6}$	3445	3437	15830	14867	0.241
$\mathbf{1 9 9 7}$	2682	2550	11064	7806	0.220
$\mathbf{1 9 9 8}$	1563	1734	9604	7525	0.156
$\mathbf{1 9 9 9}$	1772	1528	8332	10410	0.159
$\mathbf{2 0 0 0}$	1828	1313	9022	14423	0.142
$\mathbf{2 0 0 1}$	1336	973	8673	17452	0.121
$\mathbf{2 0 0 2}$	781	763	9933	18358	0.087
$\mathbf{2 0 0 3}$	2053	2051	9746	17421	0.264
$\mathbf{2 0 0 4}$	1748	1481	9530	13047	0.181
$\mathbf{2 0 0 5}$	2102	1953	9883	14990	0.224
$\mathbf{2 0 0 6}$	1615	1377	9706	19527	0.173
$\mathbf{2 0 0 7}$	1334	1163	10624	19740	0.130
$\mathbf{2 0 0 8}$	1427	1241	12229	17863	0.122
$\mathbf{2 0 0 9}$	2155	1740	12184	16734	0.161
$\mathbf{2 0 1 0}$	1274	1114	11668	17410	0.105
$\mathbf{2 0 1 1}$	810	951	12204	20785	0.085
$\mathbf{2 0 1 2}$	1306	1190	12227	23227	0.101
$\mathbf{2 0 1 3}$	2776	2507	14329	18706	0.186
$\mathbf{2 0 1 4}$	1897	1593	12149	15377	0.133
$\mathbf{2 0 1 5}$	1827	1504	10314	7993	0.132
$\mathbf{2 0 1 6}$	NA	1515	9275	5244	0.132

Table 3.6.1: North West. Total catch-at-age numbers (in thousands).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	432	1561	2029	2707	2746	2554	2215	1154	$\mathbf{2 6 4 1}$
$\mathbf{1 9 8 3}$	34	334	514	1000	2024	2247	2395	1659	$\mathbf{2 8 7 0}$
$\mathbf{1 9 8 4}$	399	1392	1760	1640	1903	1760	1721	955	2514
$\mathbf{1 9 8 5}$	192	724	1302	1113	1124	1261	1142	897	2139
$\mathbf{1 9 8 6}$	116	567	984	991	1290	1142	1333	1111	2299
$\mathbf{1 9 8 7}$	51	725	1107	1206	1518	1087	1571	1265	4038
$\mathbf{1 9 8 8}$	22	415	988	1230	1128	980	1318	1061	3317
$\mathbf{1 9 8 9}$	15	243	891	1401	1418	1451	1173	950	2444
$\mathbf{1 9 9 0}$	203	1143	791	669	859	945	833	650	2126
$\mathbf{1 9 9 1}$	129	822	1597	1013	1042	883	628	360	1061
$\mathbf{1 9 9 2}$	94	879	1258	1505	932	535	584	424	1221
$\mathbf{1 9 9 3}$	198	803	1726	1284	1054	486	363	257	537
$\mathbf{1 9 9 4}$	8	667	2371	3332	1709	892	565	257	1273
$\mathbf{1 9 9 5}$	28	528	1430	2234	2319	1174	786	328	1218
$\mathbf{1 9 9 6}$	4	538	1976	2705	2675	1656	1167	553	1714
$\mathbf{1 9 9 7}$	73	1242	2408	2771	2676	2453	1665	1010	1173
$\mathbf{1 9 9 8}$	185	1178	2822	2852	2738	1981	2173	1249	2008
$\mathbf{1 9 9 9}$	16	589	1523	1288	1020	889	663	299	464
$\mathbf{2 0 0 0}$	25	1557	3511	3456	2980	2562	2038	1279	1475
$\mathbf{2 0 0 1}$	6	1089	5099	4696	3884	2800	2505	1613	2924
$\mathbf{2 0 0 2}$	6	1353	6210	6936	3689	2672	1786	909	1855
$\mathbf{2 0 0 3}$	15	754	3259	5299	4301	2949	1809	1163	1651
$\mathbf{2 0 0 4}$	9	696	3092	4555	4073	2312	1399	871	1500
$\mathbf{2 0 0 5}$	8	662	2417	3168	3373	2119	963	586	1240
$\mathbf{2 0 0 6}$	0	59	448	1111	1881	1548	1137	551	719
$\mathbf{2 0 0 7}$	0	121	1446	1756	1485	1823	1039	712	966
$\mathbf{2 0 0 8}$	0	364	1969	4261	3518	1609	588	205	160
$\mathbf{2 0 0 9}$	12	524	885	1481	1621	1565	1077	638	416
$\mathbf{2 0 1 0}$	0	148	1069	1364	1244	1144	953	520	588
$\mathbf{2 0 1 1}$	19	438	1200	1422	1269	1158	1110	503	543
$\mathbf{2 0 1 2}$	0	38	795	2959	2356	1546	1231	672	694
$\mathbf{2 0 1 3}$	0	72	1173	1899	2584	1774	1529	697	1436
$\mathbf{2 0 1 4}$	0	3	845	2620	3057	2567	1249	649	1032
$\mathbf{2 0 1 5}$	0	400	653	1706	2536	2358	1499	985	1796
$\mathbf{1 0 5}$									

Table 3.6.2: North West. Mean weights-at-age (total live weight) (kg) in total catch (also used for stock weights).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.096	0.120	0.140	0.168	0.179	0.194	0.213	0.224	0.246
$\mathbf{1 9 8 3}$	0.106	0.121	0.135	0.147	0.153	0.174	0.180	0.199	0.215
$\mathbf{1 9 8 4}$	0.127	0.139	0.153	0.167	0.178	0.191	0.194	0.207	0.243
$\mathbf{1 9 8 5}$	0.112	0.129	0.148	0.168	0.185	0.189	0.195	0.209	0.226
$\mathbf{1 9 8 6}$	0.105	0.124	0.146	0.152	0.163	0.176	0.186	0.196	0.210
$\mathbf{1 9 8 7}$	0.107	0.120	0.136	0.149	0.157	0.167	0.167	0.173	0.192
$\mathbf{1 9 8 8}$	0.125	0.134	0.148	0.160	0.167	0.176	0.184	0.185	0.197
$\mathbf{1 9 8 9}$	0.124	0.129	0.146	0.157	0.164	0.173	0.180	0.189	0.202
$\mathbf{1 9 9 0}$	0.115	0.135	0.154	0.175	0.165	0.175	0.178	0.188	0.213
$\mathbf{1 9 9 1}$	0.112	0.126	0.142	0.162	0.174	0.191	0.200	0.212	0.213
$\mathbf{1 9 9 2}$	0.124	0.134	0.150	0.164	0.177	0.188	0.189	0.194	0.203
$\mathbf{1 9 9 3}$	0.130	0.136	0.153	0.169	0.181	0.192	0.204	0.212	0.223
$\mathbf{1 9 9 4}$	0.127	0.133	0.150	0.173	0.193	0.207	0.212	0.221	0.235
$\mathbf{1 9 9 5}$	0.128	0.143	0.152	0.164	0.179	0.196	0.204	0.213	0.232
$\mathbf{1 9 9 6}$	0.115	0.132	0.151	0.169	0.181	0.193	0.198	0.198	0.207
$\mathbf{1 9 9 7}$	0.125	0.139	0.145	0.163	0.180	0.197	0.205	0.216	0.236
$\mathbf{1 9 9 8}$	0.129	0.140	0.151	0.170	0.185	0.195	0.194	0.199	0.217
$\mathbf{1 9 9 9}$	0.111	0.130	0.157	0.177	0.195	0.212	0.217	0.222	0.244
$\mathbf{2 0 0 0}$	0.120	0.140	0.154	0.175	0.191	0.200	0.210	0.218	0.220
$\mathbf{2 0 0 1}$	0.113	0.131	0.149	0.164	0.178	0.194	0.199	0.205	0.219
$\mathbf{2 0 0 2}$	0.103	0.133	0.150	0.167	0.189	0.204	0.213	0.223	0.233
$\mathbf{2 0 0 3}$	0.115	0.133	0.143	0.159	0.178	0.196	0.209	0.216	0.228
$\mathbf{2 0 0 4}$	0.107	0.127	0.146	0.166	0.182	0.196	0.201	0.215	0.223
$\mathbf{2 0 0 5}$	0.107	0.128	0.147	0.172	0.187	0.200	0.213	0.229	0.223
$\mathbf{2 0 0 6}$	0.109	0.133	0.143	0.158	0.172	0.184	0.197	0.207	0.227
$\mathbf{2 0 0 7}$	0.107	0.127	0.140	0.155	0.160	0.173	0.194	0.193	0.190
$\mathbf{2 0 0 8}$	0.107	0.134	0.158	0.178	0.200	0.217	0.241	0.265	0.258
$\mathbf{2 0 0 9}$	0.135	0.135	0.153	0.172	0.187	0.198	0.212	0.223	0.249
$\mathbf{2 0 1 0}$	0.135	0.135	0.150	0.168	0.185	0.204	0.220	0.241	0.269
$\mathbf{2 0 1 1}$	0.133	0.148	0.158	0.159	0.173	0.189	0.205	0.222	0.243
$\mathbf{2 0 1 2}$	0.133	0.131	0.135	0.151	0.165	0.186	0.199	0.210	0.235
$\mathbf{2 0 1 3}$	0.133	0.131	0.148	0.161	0.170	0.188	0.201	0.216	0.234
$\mathbf{2 0 1 4}$	0.133	0.138	0.143	0.155	0.173	0.193	0.227	0.244	0.260
$\mathbf{2 0 1 5}$	0.100	0.131	0.150	0.157	0.170	0.183	0.202	0.215	0.227

Table 3.6.3: Summary of Marine Scotland Science West Coast scallop dredge surveys. Data from greyed out surveys are not used in the assessment.

Vessel	Cruise dates		Dredge type	No. of dredges	Width (m)	No. of hauls	No. of scallops
	From	To				WK NW	
R.V. Goldseeker	08-Jun-88	12-Aug-88	A	2	2.25	115	3543
R.V. Goldseeker	08-Jun-88	12-Aug-88	B	1			
R.V. Goldseeker	10-Jun-89	13-Jul-89	A	2	2.25	94	2124
R.V. Aora	14-Jun-90	30-Jun-90	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	85	4951
R.V. Aora	15-Jun-92	03-Jul-92	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	4.5	103	7671
R.V. Aora	21-Jun-93	09-Jul-93	$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	3178	11989
R.V. Aora	20-Jun-94	08-Jul-94	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2588	12068
R.V. Aora	19-Jun-95	07-Jul-95	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2592	10807
R.V. Aora	17-Jun-96	05-Jul-96	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2685	10124
R.V. Aora	16-Jun-97	04-Jul-97	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	4.5	2479	9813
R.V. Aora	15-Jun-98	03-Jul-98	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2488	11561
R.V. Aora	14-Jun-99	30-Jun-99	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2690	10373
R.V. Aora	12-Jun-00	30-Jun-00	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	$28 \quad 84$	12073
R.V. Aora	09-Jul-01	27-Jul-01	$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2696	11180
F.V. Golden Promise	20-May-02	30-May-02	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	15	1561	11124
R.V. Aora	10-Jun-02	26-Jun-02	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	2683	11259
R.V. Aora II	04-Aug-03	22-Aug-03	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	9	2478	21134
R.V. Aora II	09-Aug-04	27-Aug-04	$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	9	2476	18963
R.V. Aora II	08-Aug-05	27-Aug-05	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	9	$23 \quad 74$	17912
R.V. Aora II	07-Aug-06	26-Aug-06	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	9	2382	22190
R.V. Aora II	21-May-07	07-Jun-07	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	9	2275	13404
R.V. Alba na Mara	24-Apr-08	15-May-08	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	9	2270	12608
R.V. Alba na Mara	19-Apr-09	08-May-09	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	9	2269	13817
R.V. Alba na Mara	02-Apr-10	20-Apr-10	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	9	2168	12293
R.V. Alba na Mara	04-Apr-11	23-Apr-11	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	9	2265	14944

R.V. Alba na Mara	09-Apr-12	23-Apr-12	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	6 6	9	21	54	14905
R.V. Alba na Mara	03-Apr-13	22-Apr-13	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	6	9	18	61	14855
R.V. Alba na Mara	04-Apr-14	23-Apr-14	$\begin{aligned} & -\mathrm{A} \\ & \mathrm{~B} \end{aligned}$	6	9	15	53	10835
R.V. Alba na Mara	29-Mar-15	17-Apr-15	A	6	9	16	55	13357
R.V. Alba na Mara	28-Mar-16	15-Apr-16	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	6 6	9	17	56	13345

Dredge Type A: Standard commercial dredge. 2.5 ' wide. 9 tooth bar. Large belly rings.
Dredge Type B: Laboratory sampling dredge. 2.5^{\prime} wide. 11 tooth bar. Small belly rings.

Table 3.6.4: North West. Research-vessel survey data. Catch rates (numbers hour ${ }^{-1}$ metre $^{-1}$) by age class and year.

Aora

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 3}$	0.118	6.419	12.511	9.196	5.894	3.667	2.529	3.067	8.838
$\mathbf{1 9 9 4}$	0.052	3.694	9.164	11.070	7.548	4.358	2.769	2.166	9.943
$\mathbf{1 9 9 5}$	0.134	5.238	7.702	10.369	8.019	4.299	2.845	2.303	5.609
$\mathbf{1 9 9 6}$	0.129	3.472	7.674	7.652	8.086	6.195	2.819	1.608	6.527
$\mathbf{1 9 9 7}$	0.070	2.844	9.430	8.748	6.458	5.741	3.596	2.127	5.088
$\mathbf{1 9 9 8}$	0.220	7.525	8.335	8.502	5.836	4.947	4.194	3.012	5.260
$\mathbf{1 9 9 9}$	0.116	4.596	9.632	6.215	5.233	4.155	3.831	3.092	4.494
$\mathbf{2 0 0 0}$	0.082	9.722	11.323	9.141	4.654	4.715	3.467	3.200	4.511
$\mathbf{2 0 0 1}$	0.366	6.224	14.291	8.260	5.006	2.936	2.700	1.588	2.883
$\mathbf{2 0 0 2}$	0.021	6.288	9.693	13.824	5.759	3.443	2.637	2.018	2.760

Aora II

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 3}$	0.898	7.885	10.475	9.346	7.926	3.756	2.264	1.865	4.215
$\mathbf{2 0 0 4}$	0.610	4.820	7.877	8.619	7.580	5.450	2.845	2.130	4.143
$\mathbf{2 0 0 5}$	0.024	2.272	5.046	6.377	7.242	6.019	4.795	3.682	5.774
$\mathbf{2 0 0 6}$	0.022	2.441	6.426	6.424	6.508	5.586	4.390	3.350	4.824
$\mathbf{2 0 0 7}$	0.009	0.856	3.797	4.054	4.662	4.382	3.666	2.932	4.400

Alba na Mara

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 8}$	0.015	0.290	1.328	3.688	4.373	4.376	3.451	2.683	7.959
$\mathbf{2 0 0 9}$	0.030	0.780	2.720	3.890	4.420	3.570	3.120	1.570	7.930
$\mathbf{2 0 1 0}$	0.010	1.310	3.470	3.320	3.170	2.760	1.970	0.810	7.280
$\mathbf{2 0 1 1}$	0.000	0.830	4.930	6.330	4.060	4.240	3.100	1.810	7.760
$\mathbf{2 0 1 2}$	0.000	1.310	6.370	9.750	5.400	4.020	3.450	1.840	9.110
$\mathbf{2 0 1 3}$	0.040	1.380	7.090	7.940	5.850	4.470	3.480	1.950	5.710
$\mathbf{2 0 1 4}$	0.010	0.680	4.600	6.670	5.630	4.280	3.020	1.630	5.920
$\mathbf{2 0 1 5}$	0.050	1.390	5.280	6.560	6.580	5.160	2.900	1.760	6.020
$\mathbf{2 0 1 6}$	0.020	1.130	8.030	5.840	5.430	5.300	3.470	2.060	6.540

Table 3.6.5: North West. TSA final assessment input settings.

Quantity	Setting	Notes
Landings	Ages 3-10+ Years 1982-2007, 2009-2015	2008 data not included due to strange age composition which has large influence on surrounding estimates
Survey:Aora	Ages 3-9 Years 1995-2002	1993 \& 1994 Aora survey indices omitted have much higher catchability than the rest of the time series.
Survey: Aora II	Ages 3-9 Years 2003-2007	
Survey:Alba	Ages 3-9 Years 2008-2016	
Maturity	100 \% for age 3 onwards	
Natural mortality	Fixed at 0.15 for all ages	
Stock weights	Equal to catch weights	
F plateau	Age 8	
Recruitment	Modelled as random walk	
Annual survey CV multiplier	Adjusted according to the number of survey hauls	Allows for greater variability when fewer hauls
Survey age CV multiplier: Aora	(3.0,1.5, 1, 1, 1, 1, 1.8)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Aora II	(3.0,1.5, 1, 1, 1, 1, 1.8)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Alba	(1.4,1.2, 1, 1, 1, 1, 1.2)	Allows for greater variability at younger \& older ages
F variability	1999: CV multiplier $=3.0$	Allows greater variability in F in this year sudden decrease in landings associated with ASP/PSP closures
Catch CV multiplier	(2.6,1.2,1.2,1,1,1,1.2,1.6)	Allows for greater variability at ages $3,4,5,9$ \& 10+
Down-weighting single points	Alba 2008, age 4, cv multiplier = 3	Survey outlier

Table 3.6.6: North West. Final TSA run parameter estimates.

Parameter	Notation	Description	2016
Initial fishing mortality	$F(3,1982)$	Fishing mortality at age a in year y	0.054
	F(4, 1982)		0.114
	F(8, 1982)		0.256
Fishing mortality standard deviations	σ_{F}	Transitory changes in overall F	0
	σ_{u}	Persistent changes in selection (age effect in F)	0.078
	σ_{V}	Transitory changes in the year effect in F	0.106
	σ_{Y}	Persistent changes in the year effect in F	0.126
Measurement cv	$\mathrm{cV}_{\text {catch }}$	Coefficient of variation of catch-at-age data	0.156
Recruitment		Log mean recruitment at start	3.275
	$\mathrm{s}_{\text {w }}$	Standard deviation of random walk	0.179
	$\mathrm{cv}_{\text {rec }}$	Coefficient of variation of recruitment curve	0
Survey selectivities: Aora	$\Phi_{\mathrm{a} 1}(3)$	Survey selectivity at age a	0.210
	$\Phi_{\mathrm{a} 1}(4)$		0.440
	$\Phi_{\text {a1 }}(5)$		0.570
	$\Phi_{\mathrm{a} 1}(6)$		0.572
	$\Phi_{\mathrm{a} 1}(7)$		0.636
	$\Phi_{\mathrm{a} 1}(8)$		0.745
	$\Phi_{\mathrm{a} 1}(9)$		0.912
Survey catchability standard deviations: Aora	$\sigma_{\mathrm{a} 1 \Omega}$	Transitory changes in survey catchability	0.060
	$\sigma_{\text {a } 1 \beta}$	Persistent changes in survey catchability	$0{ }^{1}$
Survey measurement coefficients of variation: Aora	$\sigma_{\text {a1survey }}$	Coefficient of variation controlling gamma type dispersion	0.098
	$\eta_{\text {a1survey }}$	Coefficient of variation controlling poisson type dispersion	0.127
Survey selectivities: Aora II	$\Phi_{\mathrm{a} 2}(3)$	Survey selectivity at age a	0.218
	$\Phi_{\mathrm{a} 2}(4)$		0.423
	$\Phi_{\mathrm{a} 2}(5)$		0.539
	$\Phi_{\mathrm{a} 2}(6)$		0.711
	$\Phi_{\mathrm{a} 2}(7)$		0.849
	$\Phi_{\mathrm{a} 2}(8)$		1.084
	$\Phi_{\mathrm{a} 2}(9)$		1.620
Survey catchability standard deviations: Aora II	$\sigma_{\mathrm{a} 2 \Omega}$	Transitory changes in survey catchability	0.083
	$\sigma_{\text {a } 2 \beta}$	Persistent changes in survey catchability	0^{1}

[^4]| Survey measurement coefficients of variation: Aora II | $\sigma_{\text {a2survey }}$ | Coefficient of variation controlling gamma type dispersion | 0 |
| :---: | :---: | :---: | :---: |
| | $\eta_{\text {a2survey }}$ | Coefficient of variation controlling poisson type dispersion | 0.235 |
| Survey selectivities:
 Alba | $\Phi_{\mathrm{a}}(3)$ | Survey selectivity at age a | 0.039 |
| | $\Phi_{\mathrm{a}}(4)$ | | 0.253 |
| | $\Phi_{\mathrm{a}}(5)$ | | 0.420 |
| | $\Phi_{\mathrm{a}}(6)$ | | 0.500 |
| | $\Phi_{\mathrm{a}}(7)$ | | 0.660 |
| | $\Phi_{\mathrm{a}}(8)$ | | 0.794 |
| | $\Phi_{\mathrm{a}}(9)$ | | 0.734 |
| Survey catchability standard deviations: Alba | $\sigma_{\mathrm{a} \Omega}$ | Transitory changes in survey catchability | 0.124 |
| | $\sigma_{a \beta}$ | Persistent changes in survey catchability | 0^{1} |
| Survey measurement coefficients of variation: Alba | $\sigma_{\text {asurvey }}$ | Coefficient of variation controlling gamma type dispersion | 0.064 |
| | $\eta_{\text {asurvey }}$ | Coefficient of variation controlling poisson type dispersion | 0.218 |

[^5]Table 3.6.7: North West. Estimated population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	22.737	21.535	20.746	18.314	14.715	11.031	5.542	12.963
$\mathbf{1 9 8 3}$	20.559	18.603	16.694	15.701	13.353	10.372	7.412	12.433
$\mathbf{1 9 8 4}$	18.576	16.931	14.648	12.887	11.639	9.620	7.100	13.586
$\mathbf{1 9 8 5}$	16.277	15.279	13.211	11.228	9.483	8.367	6.609	14.219
$\mathbf{1 9 8 6}$	14.993	13.534	12.128	10.325	8.507	7.056	5.986	14.895
$\mathbf{1 9 8 7}$	13.538	12.459	10.748	9.402	7.727	6.291	4.917	14.564
$\mathbf{1 9 8 8}$	10.417	11.145	9.681	8.084	6.744	5.490	4.062	12.596
$\mathbf{1 9 8 9}$	12.333	8.587	8.671	7.253	5.830	4.761	3.568	10.854
$\mathbf{1 9 9 0}$	17.261	10.141	6.537	6.252	4.961	3.845	2.985	9.110
$\mathbf{1 9 9 1}$	20.918	14.308	7.927	4.868	4.442	3.423	2.555	8.094
$\mathbf{1 9 9 2}$	30.236	17.422	11.164	5.960	3.499	3.181	2.409	7.490
$\mathbf{1 9 9 3}$	31.128	25.173	13.760	8.354	4.319	2.541	2.265	7.082
$\mathbf{1 9 9 4}$	26.761	25.977	19.885	10.423	6.123	3.159	1.829	6.713
$\mathbf{1 9 9 5}$	26.921	22.380	20.387	14.662	7.416	4.376	2.203	5.968
$\mathbf{1 9 9 6}$	27.127	22.576	17.722	15.282	10.550	5.321	3.046	5.694
$\mathbf{1 9 9 7}$	25.044	22.655	17.565	12.977	10.720	7.321	3.525	5.788
$\mathbf{1 9 9 8}$	28.456	20.848	17.207	12.488	8.779	7.082	4.574	5.822
$\mathbf{1 9 9 9}$	31.814	23.662	15.553	11.997	8.246	5.665	4.224	6.203
$\mathbf{2 0 0 0}$	41.315	26.926	18.954	11.993	9.022	6.105	4.074	7.501
$\mathbf{2 0 0 1}$	37.138	34.394	19.972	12.876	7.695	5.563	3.526	6.690
$\mathbf{2 0 0 2}$	32.249	30.733	24.541	12.571	7.476	4.236	2.747	5.047
$\mathbf{2 0 0 3}$	25.047	26.769	22.081	15.489	7.337	4.075	2.172	4.003
$\mathbf{2 0 0 4}$	19.789	20.840	19.338	13.959	8.899	3.900	2.017	3.048
$\mathbf{2 0 0 5}$	17.676	16.553	15.376	12.658	8.330	4.981	2.054	2.668
$\mathbf{2 0 0 6}$	17.186	14.865	12.588	10.563	7.965	4.949	2.841	2.693
$\mathbf{2 0 0 7}$	16.567	14.552	11.789	9.284	7.297	5.195	3.128	3.495
$\mathbf{2 0 0 8}$	16.870	14.016	11.554	8.686	6.434	4.674	3.239	4.120
$\mathbf{2 0 0 9}$	20.678	14.254	11.061	8.413	5.891	3.981	2.770	4.336
$\mathbf{2 0 1 0}$	25.509	17.552	11.474	8.241	5.893	3.816	2.488	4.425
$\mathbf{2 0 1 1}$	$\mathbf{2 5 . 6 0 7}$	21.719	14.325	8.713	5.935	3.998	2.484	4.506
$\mathbf{2 0 1 2}$	27.040	21.841	17.810	10.917	6.283	4.063	2.606	4.565
$\mathbf{2 0 1 3}$	23.590	23.014	17.837	13.194	7.465	4.078	2.488	4.396
$\mathbf{2 0 1 4}$	22.692	20.080	18.803	13.236	8.879	4.722	2.417	4.082
$\mathbf{2 0 1 5}$	31.928	19.325	16.456	13.974	8.879	5.492	2.814	3.884
$\mathbf{2 0 1 6}$	32.538	27.187	15.889	12.334	9.494	5.526	3.228	3.943

Table 3.6.8: North West. Standard errors of estimates of population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	1.671	1.527	1.749	1.581	1.368	1.122	0.781	1.998
$\mathbf{1 9 8 3}$	1.627	1.371	1.208	1.360	1.220	1.032	0.824	1.521
$\mathbf{1 9 8 4}$	1.520	1.342	1.098	0.966	1.082	0.959	0.794	1.460
$\mathbf{1 9 8 5}$	1.502	1.256	1.096	0.882	0.764	0.844	0.743	1.540
$\mathbf{1 9 8 6}$	1.358	1.244	1.024	0.887	0.706	0.610	0.668	1.643
$\mathbf{1 9 8 7}$	1.179	1.123	1.009	0.831	0.713	0.565	0.485	1.657
$\mathbf{1 9 8 8}$	0.899	0.967	0.902	0.807	0.659	0.566	0.434	1.514
$\mathbf{1 9 8 9}$	0.825	0.741	0.784	0.724	0.641	0.529	0.434	1.380
$\mathbf{1 9 9 0}$	0.985	0.683	0.604	0.629	0.579	0.510	0.407	1.273
$\mathbf{1 9 9 1}$	1.024	0.811	0.557	0.485	0.501	0.456	0.394	1.181
$\mathbf{1 9 9 2}$	1.306	0.836	0.650	0.437	0.372	0.381	0.345	1.058
$\mathbf{1 9 9 3}$	1.211	1.065	0.665	0.501	0.329	0.281	0.288	0.929
$\mathbf{1 9 9 4}$	1.066	0.988	0.847	0.511	0.377	0.249	0.213	0.807
$\mathbf{1 9 9 5}$	1.117	0.864	0.775	0.613	0.365	0.278	0.186	0.679
$\mathbf{1 9 9 6}$	1.098	0.930	0.704	0.605	0.481	0.290	0.225	0.631
$\mathbf{1 9 9 7}$	1.068	0.913	0.736	0.523	0.456	0.370	0.224	0.582
$\mathbf{1 9 9 8}$	1.289	0.879	0.713	0.533	0.380	0.341	0.279	0.538
$\mathbf{1 9 9 9}$	1.451	1.062	0.670	0.509	0.376	0.279	0.256	0.542
$\mathbf{2 0 0 0}$	1.750	1.221	0.854	0.518	0.392	0.292	0.220	0.579
$\mathbf{2 0 0 1}$	1.716	1.440	0.922	0.601	0.356	0.277	0.209	0.516
$\mathbf{2 0 0 2}$	1.522	1.388	1.041	0.592	0.374	0.220	0.173	0.416
$\mathbf{2 0 0 3}$	1.302	1.244	0.996	0.693	0.382	0.237	0.143	0.363
$\mathbf{2 0 0 4}$	1.074	1.065	0.908	0.636	0.442	0.232	0.143	0.286
$\mathbf{2 0 0 5}$	0.960	0.886	0.789	0.600	0.415	0.284	0.150	0.262
$\mathbf{2 0 0 6}$	0.855	0.799	0.669	0.543	0.412	0.288	0.205	0.284
$\mathbf{2 0 0 7}$	0.780	0.722	0.644	0.514	0.407	0.308	0.219	0.341
$\mathbf{2 0 0 8}$	0.750	0.658	0.576	0.488	0.386	0.303	0.230	0.387
$\mathbf{2 0 0 9}$	0.900	0.632	0.510	0.406	0.330	0.261	0.219	0.440
$\mathbf{2 0 1 0}$	1.206	0.761	0.516	0.395	0.310	0.243	0.200	0.470
$\mathbf{2 0 1 1}$	1.420	1.025	0.628	0.401	0.301	0.230	0.184	0.468
$\mathbf{2 0 1 2}$	1.729	1.208	0.851	0.506	0.317	0.235	0.182	0.460
$\mathbf{2 0 1 3}$	1.984	1.475	1.012	0.688	0.401	0.246	0.185	0.448
$\mathbf{2 0 1 4}$	2.361	1.698	1.248	0.823	0.552	0.321	0.200	0.451
$\mathbf{2 0 1 5}$	3.121	2.020	1.431	1.021	0.656	0.437	0.258	0.475
$\mathbf{2 0 1 6}$	5.792	2.673	1.716	1.189	0.849	0.537	0.350	0.547

Table 3.6.9: North West. Estimates of fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.051	0.105	0.130	0.167	0.201	0.250	0.250	0.250
$\mathbf{1 9 8 3}$	0.044	0.090	0.110	0.150	0.179	0.231	0.231	0.231
$\mathbf{1 9 8 4}$	0.046	0.098	0.117	0.158	0.182	0.228	0.228	0.228
$\mathbf{1 9 8 5}$	0.037	0.081	0.098	0.129	0.147	0.188	0.188	0.188
$\mathbf{1 9 8 6}$	0.038	0.084	0.105	0.141	0.154	0.215	0.215	0.215
$\mathbf{1 9 8 7}$	0.045	0.103	0.134	0.180	0.191	0.288	0.288	0.288
$\mathbf{1 9 8 8}$	0.042	0.099	0.136	0.175	0.194	0.277	0.277	0.277
$\mathbf{1 9 8 9}$	0.048	0.117	0.167	0.215	0.250	0.309	0.309	0.309
$\mathbf{1 9 9 0}$	0.038	0.097	0.137	0.180	0.204	0.243	0.243	0.243
$\mathbf{1 9 9 1}$	0.037	0.103	0.148	0.199	0.209	0.230	0.230	0.230
$\mathbf{1 9 9 2}$	0.034	0.096	0.149	0.194	0.200	0.223	0.223	0.223
$\mathbf{1 9 9 3}$	0.026	0.078	0.126	0.163	0.163	0.183	0.183	0.183
$\mathbf{1 9 9 4}$	0.029	0.090	0.154	0.191	0.191	0.215	0.215	0.215
$\mathbf{1 9 9 5}$	0.026	0.084	0.138	0.179	0.182	0.212	0.212	0.212
$\mathbf{1 9 9 6}$	0.029	0.101	0.161	0.205	0.215	0.262	0.262	0.262
$\mathbf{1 9 9 7}$	0.034	0.125	0.191	0.241	0.265	0.321	0.321	0.321
$\mathbf{1 9 9 8}$	0.036	0.143	0.211	0.265	0.289	0.367	0.367	0.367
$\mathbf{1 9 9 9}$	0.017	0.072	0.109	0.134	0.150	0.180	0.180	0.180
$\mathbf{2 0 0 0}$	0.034	0.149	0.236	0.294	0.334	0.400	0.400	0.400
$\mathbf{2 0 0 1}$	0.041	0.187	0.313	0.394	0.445	0.556	0.556	0.556
$\mathbf{2 0 0 2}$	0.038	0.181	0.310	0.389	0.457	0.519	0.519	0.519
$\mathbf{2 0 0 3}$	0.037	0.175	0.308	0.404	0.483	0.555	0.555	0.555
$\mathbf{2 0 0 4}$	0.032	0.154	0.273	0.366	0.430	0.494	0.494	0.494
$\mathbf{2 0 0 5}$	0.025	0.125	0.226	0.313	0.370	0.410	0.410	0.410
$\mathbf{2 0 0 6}$	0.017	0.082	0.155	0.220	0.277	0.308	0.308	0.308
$\mathbf{2 0 0 7}$	0.016	0.079	0.155	0.217	0.296	0.324	0.324	0.324
$\mathbf{2 0 0 8}$	0.017	0.080	0.165	0.237	0.328	0.373	0.373	0.373
$\mathbf{2 0 0 9}$	0.014	0.065	0.142	0.206	0.285	0.321	0.321	0.321
$\mathbf{2 0 1 0}$	0.011	0.053	0.122	0.175	0.235	0.280	0.280	0.280
$\mathbf{2 0 1 1}$	0.010	0.048	0.121	0.176	0.228	0.279	0.279	0.279
$\mathbf{2 0 1 2}$	0.011	0.053	0.151	0.231	0.282	0.342	0.342	0.342
$\mathbf{2 0 1 3}$	0.011	0.052	0.149	0.247	0.310	0.375	0.375	0.375
$\mathbf{2 0 1 4}$	0.011	0.050	0.147	0.250	0.331	0.370	0.370	0.370
$\mathbf{2 0 1 5}$	0.011	0.046	0.139	0.238	0.326	0.384	0.384	0.384

Table 3.6.10: North West. Standard errors of estimates of log fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.006	0.010	0.013	0.016	0.020	0.024	0.024	0.024
$\mathbf{1 9 8 3}$	0.006	0.010	0.012	0.016	0.020	0.025	0.025	0.025
$\mathbf{1 9 8 4}$	0.007	0.011	0.013	0.017	0.021	0.025	0.025	0.025
$\mathbf{1 9 8 5}$	0.005	0.009	0.011	0.014	0.017	0.021	0.021	0.021
$\mathbf{1 9 8 6}$	0.006	0.010	0.012	0.015	0.017	0.023	0.023	0.023
$\mathbf{1 9 8 7}$	0.007	0.012	0.015	0.019	0.021	0.030	0.030	0.030
$\mathbf{1 9 8 8}$	0.007	0.011	0.016	0.019	0.022	0.029	0.029	0.029
$\mathbf{1 9 8 9}$	0.008	0.013	0.019	0.023	0.028	0.032	0.032	0.032
$\mathbf{1 9 9 0}$	0.006	0.011	0.016	0.019	0.022	0.025	0.025	0.025
$\mathbf{1 9 9 1}$	0.006	0.012	0.017	0.022	0.023	0.024	0.024	0.024
$\mathbf{1 9 9 2}$	0.005	0.011	0.017	0.021	0.023	0.025	0.025	0.025
$\mathbf{1 9 9 3}$	0.004	0.009	0.015	0.018	0.019	0.022	0.022	0.022
$\mathbf{1 9 9 4}$	0.005	0.011	0.018	0.021	0.021	0.026	0.026	0.026
$\mathbf{1 9 9 5}$	0.004	0.010	0.015	0.019	0.019	0.023	0.023	0.023
$\mathbf{1 9 9 6}$	0.005	0.011	0.017	0.020	0.022	0.025	0.025	0.025
$\mathbf{1 9 9 7}$	0.005	0.013	0.020	0.023	0.026	0.030	0.030	0.030
$\mathbf{1 9 9 8}$	0.006	0.015	0.022	0.025	0.028	0.034	0.034	0.034
$\mathbf{1 9 9 9}$	0.003	0.010	0.015	0.017	0.019	0.022	0.022	0.022
$\mathbf{2 0 0 0}$	0.005	0.016	0.025	0.028	0.032	0.036	0.036	0.036
$\mathbf{2 0 0 1}$	0.007	0.019	0.031	0.035	0.040	0.046	0.046	0.046
$\mathbf{2 0 0 2}$	0.006	0.019	0.031	0.036	0.042	0.046	0.046	0.046
$\mathbf{2 0 0 3}$	0.006	0.018	0.031	0.037	0.044	0.049	0.049	0.049
$\mathbf{2 0 0 4}$	0.005	0.016	0.028	0.034	0.041	0.046	0.046	0.046
$\mathbf{2 0 0 5}$	0.004	0.014	0.024	0.030	0.036	0.040	0.040	0.040
$\mathbf{2 0 0 6}$	0.003	0.009	0.017	0.022	0.029	0.030	0.030	0.030
$\mathbf{2 0 0 7}$	0.003	0.009	0.018	0.023	0.031	0.031	0.031	0.031
$\mathbf{2 0 0 8}$	0.003	0.013	0.027	0.038	0.052	0.060	0.060	0.060
$\mathbf{2 0 0 9}$	0.002	0.008	0.016	0.022	0.030	0.033	0.033	0.033
$\mathbf{2 0 1 0}$	0.002	0.006	0.014	0.018	0.025	0.028	0.028	0.028
$\mathbf{2 0 1 1}$	0.002	0.006	0.014	0.018	0.024	0.029	0.029	0.029
$\mathbf{2 0 1 2}$	0.002	0.006	0.017	0.024	0.030	0.035	0.035	0.035
$\mathbf{2 0 1 3}$	0.002	0.006	0.018	0.026	0.034	0.040	0.040	0.040
$\mathbf{2 0 1 4}$	0.002	0.007	0.019	0.029	0.038	0.042	0.042	0.042
$\mathbf{2 0 1 5}$	0.002	0.007	0.021	0.032	0.043	0.048	0.048	0.048

Table 3.6.11: North West. Stock summary from the final TSA run. Catch estimate and Mean F in 2016 are model forecasts.

	Catch (t)	Catch estimate (t)	SSB (t)	Recruitment (1000s)	$\begin{aligned} & \text { Mean } \\ & F(4-6) \end{aligned}$
1982	3294	3144	22149	22737	0.134
1983	2335	2350	18173	20559	0.117
1984	2556	2492	18789	18576	0.125
1985	1812	1874	16670	16277	0.103
1986	1723	1789	14464	14993	0.110
1987	2091	1929	12365	13538	0.139
1988	1849	1724	11361	10417	0.137
1989	1750	1731	10129	12333	0.166
1990	1424	1296	10118	17261	0.138
1991	1273	1292	10606	20918	0.150
1992	1258	1344	12785	30236	0.146
1993	1122	1351	15329	31128	0.122
1994	2009	1867	16819	26761	0.145
1995	1817	1858	17405	26921	0.134
1996	2324	2265	17605	27127	0.156
1997	2773	2778	17688	25044	0.186
1998	3072	2953	17609	28456	0.206
1999	1254	1631	18352	31814	0.105
2000	3478	3558	21184	41315	0.226
2001	4376	4324	20338	37138	0.298
2002	4532	4135	19606	32249	0.293
2003	3756	3808	17091	25047	0.296
2004	3296	3178	14950	19789	0.264
2005	2655	2556	13499	17676	0.221
2006	1357	1656	11849	17186	0.152
2007	1532	1576	10995	16567	0.150
2008	2406	2073	12709	16870	0.161
2009	1547	1586	12138	20678	0.138
2010	1365	1424	13361	25509	0.117
2011	1391	1421	14610	25607	0.115
2012	1785	1793	14585	27040	0.145
2013	2054	2056	15394	23590	0.149
2014	2261	2231	15662	22692	0.149
2015	2236	2127	16278	31928	0.141
2016	NA	2306	17581	32538	0.148

Table 3.8.1: Shetland. Total catch-at-age numbers (in thousands).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 6}$	0	26	85	274	463	379	244	250	308
$\mathbf{1 9 8 7}$	3	70	224	219	200	204	177	120	325
$\mathbf{1 9 8 8}$	5	127	284	306	266	186	159	125	373
$\mathbf{1 9 8 9}$	17	126	305	346	374	411	378	273	559
$\mathbf{1 9 9 0}$	19	222	209	262	334	291	253	226	574
$\mathbf{1 9 9 1}$	9	118	208	242	267	285	316	200	609
$\mathbf{1 9 9 2}$	123	543	479	382	297	189	221	176	660
$\mathbf{1 9 9 3}$	1	113	1175	882	338	160	138	150	485
$\mathbf{1 9 9 4}$	0	112	868	1736	441	176	105	83	376
$\mathbf{1 9 9 5}$	0	108	843	1638	1221	279	133	101	309
$\mathbf{1 9 9 6}$	0	3	348	1120	1146	698	222	115	297
$\mathbf{1 9 9 7}$	0	67	804	1522	1213	911	574	192	304
$\mathbf{1 9 9 8}$	0	26	246	668	1076	1087	909	635	619
$\mathbf{1 9 9 9}$	1	39	181	426	901	927	677	426	496
$\mathbf{2 0 0 0}$	14	82	190	217	272	345	348	176	219
$\mathbf{2 0 0 1}$	0	24	723	540	260	271	344	179	480
$\mathbf{2 0 0 2}$	0	9	248	1089	665	304	289	211	461
$\mathbf{2 0 0 3}$	0	46	566	973	969	484	278	173	620
$\mathbf{2 0 0 4}$	0	149	772	1358	1069	708	305	138	369
$\mathbf{2 0 0 5}$	3	408	651	783	854	566	330	167	216
$\mathbf{2 0 0 6}$	11	335	904	667	659	568	395	192	495
$\mathbf{2 0 0 7}$	0	78	872	1078	579	438	331	169	207
$\mathbf{2 0 0 8}$	0	72	535	1269	808	648	519	334	430
$\mathbf{2 0 0 9}$	0	131	508	859	986	602	500	402	462
$\mathbf{2 0 1 0}$	0	144	793	1167	1098	927	629	318	338
$\mathbf{2 0 1 1}$	0	31	391	575	927	919	764	475	534
$\mathbf{2 0 1 2}$	0	155	485	781	856	977	1232	792	553
$\mathbf{2 0 1 3}$	0	41	744	1063	994	1109	1271	986	1066
$\mathbf{2 0 1 4}$	0	22	200	944	971	892	846	650	679
$\mathbf{2 0 1 5}$	0	59	305	693	1354	1041	762	645	860

Table 3.8.2: Shetland. Mean weights-at-age (total live weight) (kg) in total catch (also used for stock weights).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 6}$	0.114	0.139	0.145	0.152	0.160	0.166	0.188	0.235	0.223
$\mathbf{1 9 8 7}$	0.128	0.140	0.160	0.177	0.191	0.199	0.210	0.222	0.259
$\mathbf{1 9 8 8}$	0.132	0.143	0.163	0.179	0.193	0.204	0.209	0.217	0.244
$\mathbf{1 9 8 9}$	0.118	0.136	0.149	0.163	0.177	0.190	0.204	0.217	0.242
$\mathbf{1 9 9 0}$	0.120	0.134	0.149	0.162	0.173	0.189	0.203	0.218	0.226
$\mathbf{1 9 9 1}$	0.107	0.133	0.147	0.166	0.174	0.188	0.198	0.207	0.221
$\mathbf{1 9 9 2}$	0.111	0.129	0.149	0.161	0.180	0.194	0.202	0.209	0.223
$\mathbf{1 9 9 3}$	0.091	0.126	0.139	0.154	0.177	0.191	0.201	0.211	0.235
$\mathbf{1 9 9 4}$	0.103	0.123	0.137	0.151	0.176	0.199	0.203	0.215	0.232
$\mathbf{1 9 9 5}$	0.101	0.119	0.139	0.159	0.163	0.194	0.213	0.215	0.229
$\mathbf{1 9 9 6}$	0.091	0.117	0.130	0.145	0.167	0.191	0.212	0.214	0.234
$\mathbf{1 9 9 7}$	0.091	0.127	0.134	0.149	0.165	0.182	0.197	0.212	0.228
$\mathbf{1 9 9 8}$	0.129	0.125	0.138	0.146	0.162	0.174	0.186	0.199	0.215
$\mathbf{1 9 9 9}$	0.129	0.127	0.140	0.150	0.167	0.183	0.198	0.212	0.234
$\mathbf{2 0 0 0}$	0.132	0.140	0.145	0.154	0.164	0.180	0.197	0.216	0.229
$\mathbf{2 0 0 1}$	0.130	0.126	0.138	0.158	0.170	0.187	0.193	0.203	0.229
$\mathbf{2 0 0 2}$	0.130	0.126	0.140	0.153	0.169	0.186	0.196	0.202	0.221
$\mathbf{2 0 0 3}$	0.132	0.130	0.144	0.167	0.182	0.195	0.203	0.212	0.243
$\mathbf{2 0 0 4}$	0.146	0.132	0.147	0.168	0.189	0.203	0.211	0.222	0.251
$\mathbf{2 0 0 5}$	0.120	0.139	0.154	0.166	0.184	0.200	0.211	0.232	0.256
$\mathbf{2 0 0 6}$	0.122	0.136	0.157	0.169	0.182	0.195	0.211	0.218	0.239
$\mathbf{2 0 0 7}$	0.129	0.130	0.149	0.175	0.190	0.207	0.222	0.242	0.261
$\mathbf{2 0 0 8}$	0.121	0.142	0.151	0.167	0.187	0.202	0.215	0.229	0.248
$\mathbf{2 0 0 9}$	0.122	0.146	0.164	0.184	0.197	0.214	0.232	0.242	0.255
$\mathbf{2 0 1 0}$	0.122	0.146	0.159	0.178	0.196	0.214	0.227	0.237	0.251
$\mathbf{2 0 1 1}$	0.122	0.132	0.149	0.165	0.181	0.199	0.215	0.229	0.244
$\mathbf{2 0 1 2}$	0.122	0.139	0.155	0.168	0.179	0.196	0.214	0.226	0.246
$\mathbf{2 0 1 3}$	0.122	0.131	0.143	0.162	0.179	0.197	0.209	0.219	0.239
$\mathbf{2 0 1 4}$	0.122	0.135	0.153	0.164	0.175	0.192	0.209	0.226	0.247
$\mathbf{2 0 1 5}$	0.122	0.137	0.147	0.168	0.176	0.192	0.203	0.216	0.230

Table 3.8.3: Summary of Marine Scotland Science Shetland scallop dredge surveys. Due to poor weather conditions, no survey data are available from 2014 or 2015 and in 2016 only a partial survey was completed.
Data from greyed out surveys are not used in the assessment.

Vessel	Cruise dates		Dredge type	No. of dredges	Width (m)	No. of hauls	No. of scallops
	From	To					
M.F.V. Cornucopia	$\begin{aligned} & \text { 09-May- } \\ & 95 \end{aligned}$	$\begin{gathered} \text { 20-May- } \\ 95 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	7.62	89	8342
M.F.V. Cornucopia	$\begin{gathered} \text { 08-May- } \\ 96 \end{gathered}$	$\begin{gathered} \text { 17-May- } \\ 96 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	7.62	102	8350
R.V. Clupea	$\begin{gathered} \hline \text { 28-Jan- } \\ 98 \\ \hline \end{gathered}$	$\begin{gathered} \text { 11-Feb- } \\ 98 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	4.5	90	5511
R.V. Clupea	$\begin{gathered} \text { 10-Mar- } \\ 99 \end{gathered}$	$\begin{gathered} \text { 23-Mar- } \\ 99 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	80	4893
R.V. Clupea	$\begin{gathered} \text { 02-Mar- } \\ 00 \end{gathered}$	$\begin{gathered} \text { 13-Mar- } \\ 00 \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	41	2855
R.V. Clupea	$\begin{gathered} \text { 14-Feb- } \\ 01 \end{gathered}$	$\begin{gathered} \text { 27-Feb- } \\ 01 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	86	5601
R.V. Clupea	$\begin{gathered} \hline \text { 04-Dec- } \\ 01 \\ \hline \end{gathered}$	$\begin{gathered} \text { 17-Dec- } \\ 01 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	91	5402
R.V. Clupea	$\begin{gathered} \text { 04-Mar- } \\ 03 \end{gathered}$	$\begin{gathered} \text { 17-Mar- } \\ 03 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	91	5339
R.V. Clupea	$\begin{gathered} \text { 27-Jan- } \\ 04 \end{gathered}$	$\begin{gathered} \text { 09-Feb- } \\ 04 \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	50	2447
R.V. Clupea	$\begin{gathered} \text { 15-Feb- } \\ 05 \end{gathered}$	$\begin{gathered} \text { 01-Mar- } \\ 05 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	93	5667
R.V. Clupea	$\begin{gathered} \hline \text { 09-Mar- } \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} \text { 27-Mar- } \\ 06 \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	4.5	89	5630
R.V. Clupea	$\begin{gathered} \text { 15-Mar- } \\ 07 \end{gathered}$	$\begin{gathered} \hline \text { 31-Mar- } \\ 07 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	4.5	82	5542
R.V. Clupea	$\begin{gathered} \hline \text { 24-Jan- } \\ 08 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 06-Feb- } \\ 08 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	4.5	49	3219

R.V. Alba na Mara	$\begin{gathered} \text { 17-Feb- } \\ 09 \end{gathered}$	$\begin{gathered} \text { 03-Mar- } \\ 09 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	9	48	6221
R.V. Alba na Mara	$\begin{gathered} \text { 15-Mar- } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { 29-Mar- } \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	9	85	12847
R.V. Alba na Mara	$\begin{gathered} \text { 31-Jan- } \\ 11 \end{gathered}$	14-Feb- 11	$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	9	65	10612
R.V. Alba na Mara	$\begin{gathered} \text { 23-Jan- } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 06-Feb- } \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	9	64	6200
R.V. Alba na Mara	$\begin{gathered} \text { 08-Jan- } \\ 13 \end{gathered}$	$\begin{gathered} \text { 19-Jan- } \\ 13 \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	9	64	6706
R.V. Alba na Mara	$\begin{array}{c\|} \hline \text { 26-Jan- } \\ 16 \end{array}$	$\begin{gathered} \hline \text { 08-Feb- } \\ 16 \end{gathered}$	$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	9	19	2260

Dredge Type A: Standard commercial dredge. 2.5 ' wide. 9 tooth bar. Large belly rings.
Dredge Type B: Laboratory sampling dredge. 2.5^{\prime} wide. 11 tooth bar. Small belly rings.

Table 3.8.4: Shetland. Research-vessel survey data. Catch rates (numbers hour${ }^{1}$ metre ${ }^{-1}$) by age class and year.

Clupea

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 8}$	0.033	0.531	1.927	2.410	5.709	5.097	5.192	3.074	2.228
$\mathbf{1 9 9 9}$	0.072	1.202	1.099	2.208	3.282	6.404	5.480	3.416	2.585
$\mathbf{2 0 0 0}$	0.032	2.643	5.000	1.975	3.227	5.616	6.062	3.832	1.921
$\mathbf{2 0 0 1}$	0.025	1.066	8.413	3.953	1.890	2.892	3.249	2.728	3.552
$\mathbf{2 0 0 2}$	0.070	2.534	6.798	3.731	1.931	3.142	3.128	2.179	1.744
$\mathbf{2 0 0 3}$	0.009	0.611	4.298	5.423	4.914	2.422	2.273	2.539	2.427
$\mathbf{2 0 0 4}$	0.009	0.556	1.876	5.118	4.854	3.315	2.031	1.020	3.506
$\mathbf{2 0 0 5}$	0.051	3.931	3.128	4.381	4.372	3.764	2.316	1.532	2.826
$\mathbf{2 0 0 6}$	0.015	2.026	3.602	4.188	3.927	3.592	3.222	2.887	4.698
$\mathbf{2 0 0 7}$	0.032	1.489	5.316	4.710	3.892	3.312	3.216	3.158	4.338
$\mathbf{2 0 0 8}$	0.009	0.726	2.168	7.764	6.349	2.104	2.694	2.812	4.535

Alba

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 9}$	0.050	1.100	2.340	4.940	4.580	3.560	2.700	0.950	6.920
$\mathbf{2 0 1 0}$	0.020	1.830	3.510	5.440	5.340	4.050	2.420	0.860	8.120
$\mathbf{2 0 1 1}$	0.040	1.140	3.540	5.180	4.480	5.140	3.930	1.750	8.920
$\mathbf{2 0 1 2}$	0.000	0.850	2.610	4.220	3.040	3.350	2.340	1.330	4.170
$\mathbf{2 0 1 3}$	0.000	0.710	3.850	3.610	3.370	3.340	2.760	1.710	4.390
$\mathbf{2 0 1 4}$	NA								
$\mathbf{2 0 1 5}$	NA								
$\mathbf{2 0 1 6}$	0	0.28	2.39	2.47	3.29	3.67	2.93	1.66	9.3

Table 3.8.5: Shetland. TSA final assessment input settings.

Quantity	Setting	Notes
Landings	Ages 3 - 10+	
	Years 1984-2015	
Survey:Clupea	Ages 3-9	
	Years 1998-2008	
Survey:Alba		Excluding 2014 \& 2015 when poor weather
	Years 2009-2016	prevented the survey taking place
Maturity	100 \% for age 3 onwards	
Natural mortality	Fixed at 0.15 for all ages	
Stock weights	Equal to catch weights	
F plateau	Age 9	
Recruitment	Modelled as random walk	
Annual survey CV multiplier	Adjusted according to the number of survey hauls	Allows for greater variability when fewer hauls
Survey age CV multiplier: Clupea	(2.5,1.5,1,1,1,1,1.2)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Alba	(2.2,1,1,1,1,1.2,1.4)	Allows for greater variability at younger \& older ages
Recruitment variability	1992: CV multiplier = 3.0	Allows greater variability to capture big increase in these years
Catch CV multiplier	(2.5,1.5, 1, 1, 1, 1, 1, 1)	Allows for greater variability at ages 3,4 \& 10+
Multipliers on variances for fishing mortality estimates.	$\mathrm{H}(3)=3 ; \mathrm{H}(4)=2$	Allows for more variable fishing mortalities for ages 3 \& 4

Table 3.8.6: Shetland. Final TSA run parameter estimates.

Parameter	Notation	Description	2016
Initial fishing mortality	F(3, 1984)	Fishing mortality at age a in year y	0.026
	F(4, 1984)		0.050
	F(8, 1984)		0.214
Fishing mortality standard deviations	$\sigma_{\text {F }}$	Transitory changes in overall F	0.196
	σ_{u}	Persistent changes in selection (age effect in F)	0.099
	σ_{V}	Transitory changes in the year effect in F	0.185
	σ_{Y}	Persistent changes in the year effect in F	0.143
Measurement cv	$\mathrm{cv}_{\text {catch }}$	Coefficient of variation of catch-atage data	0.110
Recruitment		Log mean recruitment at start	1.403
	s_{w}	Standard deviation of random walk	0.228
	$\mathrm{CV}_{\text {rec }}$	Coefficient of variation of recruitment curve	0.125
Survey selectivities: Clupea	$\Phi_{\text {c }}(3)$	Survey selectivity at age a	0.197
	$\Phi_{\text {c }}(4)$		0.756
	$\Phi_{\text {c }}(5)$		0.868
	$\Phi_{\mathrm{c}}(6)$		1.192
	$\Phi_{\mathrm{c}}(7)$		1.873
	$\Phi_{\text {c }}(8)$		2.441
	$\Phi_{c}(9)$		2.906
Survey catchability standard deviations: Clupea	$\sigma_{\mathrm{c} \Omega}$	Transitory changes in survey catchability	0.110
	$\sigma_{\text {c }}$	Persistent changes in survey catchability	0^{1}
Survey measurement coefficients of variation: Clupea	$\sigma_{\text {csurvey }}$	Coefficient of variation controlling gamma type dispersion	0.278
	$\eta_{\text {csuruey }}$	Coefficient of variation controlling poisson type dispersion	0.252
Survey selectivities: Alba	$\Phi_{\text {a }}(3)$	Survey selectivity at age a	0.126
	$\Phi_{\text {a }}(4)$		0.359
	$\Phi_{\text {a }}(5)$		0.628
	$\Phi_{\text {a }}(6)$		0.702
	$\Phi_{\text {a }}(7)$		0.878
	$\Phi_{\mathrm{a}}(8)$		1.043
	$\Phi_{\mathrm{a}}(9)$		0.850
Survey catchability standard deviations: Alba	σ_{a}	Transitory changes in survey catchability	0.181
	$\sigma_{a \beta}$	Persistent changes in survey catchability	0^{1}
Survey measurement coefficients of variation: Alba	$\sigma_{\text {asurvey }}$	Coefficient of variation controlling gamma type dispersion	0.009
	$\eta_{\text {asurvey }}$	Coefficient of variation controlling poisson type dispersion	0.281

[^6]Table 3.8.7: Shetland. Estimated population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1 9 8 6}$	4.582	4.044	3.772	3.285	2.575	1.596	1.409	1.752
$\mathbf{1 9 8 7}$	3.965	3.888	3.382	3.003	2.446	1.896	1.160	2.226
$\mathbf{1 9 8 8}$	2.782	3.355	3.155	2.698	2.394	1.885	1.440	2.500
$\mathbf{1 9 8 9}$	2.635	2.311	2.638	2.446	2.073	1.876	1.448	2.916
$\mathbf{1 9 9 0}$	3.391	2.195	1.763	1.968	1.764	1.302	1.194	2.969
$\mathbf{1 9 9 1}$	6.165	2.787	1.755	1.309	1.411	1.268	0.902	2.897
$\mathbf{1 9 9 2}$	13.248	5.213	2.237	1.311	0.911	0.979	0.830	2.579
$\mathbf{1 9 9 3}$	12.077	10.843	4.022	1.560	0.888	0.636	0.662	2.209
$\mathbf{1 9 9 4}$	11.610	10.844	8.337	2.470	1.092	0.641	0.441	1.924
$\mathbf{1 9 9 5}$	10.119	9.857	8.639	5.717	1.733	0.779	0.450	1.620
$\mathbf{1 9 9 6}$	7.461	8.591	7.815	6.048	3.857	1.239	0.549	1.407
$\mathbf{1 9 9 7}$	4.379	6.162	6.902	5.597	4.140	2.664	0.856	1.301
$\mathbf{1 9 9 8}$	3.632	3.702	4.675	4.749	3.774	2.725	1.768	1.415
$\mathbf{1 9 9 9}$	5.345	2.856	2.919	3.296	3.063	2.169	1.452	1.568
$\mathbf{2 0 0 0}$	8.388	4.535	2.275	2.107	1.999	1.781	1.244	1.779
$\mathbf{2 0 0 1}$	7.816	7.166	3.729	1.781	1.556	1.404	1.194	2.131
$\mathbf{2 0 0 2}$	8.746	6.683	5.397	2.723	1.296	1.090	0.905	2.248
$\mathbf{2 0 0 3}$	8.137	7.477	5.464	3.602	1.755	0.833	0.672	2.084
$\mathbf{2 0 0 4}$	8.071	6.939	5.917	3.803	2.189	1.073	0.461	1.638
$\mathbf{2 0 0 5}$	11.421	6.815	5.231	3.838	2.332	1.263	0.648	1.336
$\mathbf{2 0 0 6}$	13.489	9.235	5.408	3.854	2.596	1.527	0.802	1.348
$\mathbf{2 0 0 7}$	12.975	11.397	7.263	4.021	2.725	1.727	0.962	1.230
$\mathbf{2 0 0 8}$	12.031	11.066	8.982	5.215	2.844	1.859	1.118	1.440
$\mathbf{2 0 0 9}$	10.890	10.258	8.948	6.649	3.739	1.884	1.137	1.502
$\mathbf{2 0 1 0}$	10.515	9.273	8.375	7.044	4.867	2.644	1.192	1.480
$\mathbf{2 0 1 1}$	10.419	8.967	7.403	6.333	5.194	3.395	1.716	1.689
$\mathbf{2 0 1 2}$	12.259	8.912	7.348	5.797	4.677	3.690	2.244	2.033
$\mathbf{2 0 1 3}$	7.777	10.448	7.298	5.657	4.255	3.196	2.101	2.456
$\mathbf{2 0 1 4}$	5.898	6.642	8.347	5.294	3.942	2.629	1.595	1.916
$\mathbf{2 0 1 5}$	6.772	5.039	5.470	6.340	3.704	2.590	1.518	1.841
$\mathbf{2 0 1 6}$	6.137	5.779	4.088	4.102	4.262	2.262	1.525	1.541

Table 3.8.8: Shetland. Standard errors of estimates of population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1 9 8 6}$	0.368	0.247	0.312	0.399	0.341	0.220	0.206	0.240
$\mathbf{1 9 8 7}$	0.348	0.314	0.209	0.264	0.334	0.285	0.183	0.251
$\mathbf{1 9 8 8}$	0.267	0.298	0.266	0.186	0.221	0.278	0.236	0.262
$\mathbf{1 9 8 9}$	0.228	0.226	0.249	0.225	0.154	0.181	0.225	0.285
$\mathbf{1 9 9 0}$	0.272	0.189	0.180	0.204	0.185	0.127	0.149	0.290
$\mathbf{1 9 9 1}$	0.404	0.222	0.154	0.149	0.170	0.152	0.106	0.282
$\mathbf{1 9 9 2}$	0.737	0.341	0.182	0.125	0.122	0.140	0.126	0.258
$\mathbf{1 9 9 3}$	2.209	0.651	0.280	0.149	0.099	0.098	0.114	0.241
$\mathbf{1 9 9 4}$	0.643	0.618	0.493	0.201	0.109	0.071	0.070	0.205
$\mathbf{1 9 9 5}$	0.547	0.540	0.473	0.370	0.157	0.086	0.055	0.184
$\mathbf{1 9 9 6}$	0.460	0.462	0.427	0.364	0.292	0.128	0.070	0.170
$\mathbf{1 9 9 7}$	0.262	0.366	0.376	0.324	0.288	0.238	0.107	0.174
$\mathbf{1 9 9 8}$	0.566	0.222	0.277	0.295	0.258	0.235	0.199	0.203
$\mathbf{1 9 9 9}$	0.292	0.154	0.170	0.195	0.219	0.183	0.172	0.218
$\mathbf{2 0 0 0}$	0.409	0.249	0.121	0.133	0.153	0.174	0.148	0.238
$\mathbf{2 0 0 1}$	0.407	0.352	0.211	0.104	0.112	0.130	0.148	0.255
$\mathbf{2 0 0 2}$	0.450	0.350	0.273	0.173	0.084	0.091	0.105	0.255
$\mathbf{2 0 0 3}$	0.412	0.386	0.292	0.207	0.131	0.070	0.075	0.237
$\mathbf{2 0 0 4}$	0.407	0.352	0.307	0.227	0.155	0.100	0.057	0.213
$\mathbf{2 0 0 5}$	0.583	0.346	0.256	0.226	0.164	0.114	0.077	0.185
$\mathbf{2 0 0 6}$	0.629	0.466	0.278	0.206	0.175	0.128	0.090	0.170
$\mathbf{2 0 0 7}$	0.517	0.527	0.362	0.219	0.161	0.137	0.104	0.177
$\mathbf{2 0 0 8}$	0.486	0.440	0.401	0.277	0.170	0.126	0.110	0.183
$\mathbf{2 0 0 9}$	0.573	0.414	0.349	0.314	0.219	0.131	0.100	0.185
$\mathbf{2 0 1 0}$	0.699	0.489	0.340	0.298	0.256	0.181	0.115	0.192
$\mathbf{2 0 1 1}$	0.809	0.601	0.412	0.301	0.253	0.207	0.145	0.200
$\mathbf{2 0 1 2}$	1.107	0.693	0.506	0.349	0.253	0.216	0.178	0.238
$\mathbf{2 0 1 3}$	1.292	0.949	0.587	0.427	0.290	0.209	0.169	0.261
$\mathbf{2 0 1 4}$	1.516	1.109	0.818	0.492	0.360	0.246	0.169	0.264
$\mathbf{2 0 1 5}$	1.736	1.300	0.939	0.698	0.421	0.309	0.211	0.310
$\mathbf{2 0 1 6}$	2.241	1.489	1.096	0.792	0.605	0.366	0.270	0.428

Table 3.8.9: Shetland. Estimates of fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1 9 8 6}$	0.015	0.022	0.078	0.127	0.151	0.173	0.208	0.206
$\mathbf{1 9 8 7}$	0.018	0.060	0.076	0.078	0.104	0.126	0.143	0.165
$\mathbf{1 9 8 8}$	0.032	0.090	0.106	0.113	0.094	0.119	0.131	0.166
$\mathbf{1 9 8 9}$	0.034	0.112	0.144	0.178	0.319	0.309	0.230	0.243
$\mathbf{1 9 9 0}$	0.052	0.084	0.144	0.187	0.187	0.225	0.222	0.230
$\mathbf{1 9 9 1}$	0.019	0.078	0.153	0.205	0.221	0.286	0.259	0.257
$\mathbf{1 9 9 2}$	0.051	0.114	0.204	0.237	0.209	0.250	0.247	0.314
$\mathbf{1 9 9 3}$	0.019	0.115	0.357	0.232	0.206	0.255	0.274	0.273
$\mathbf{1 9 9 4}$	0.016	0.082	0.235	0.217	0.204	0.214	0.249	0.249
$\mathbf{1 9 9 5}$	0.014	0.083	0.209	0.251	0.193	0.210	0.271	0.240
$\mathbf{1 9 9 6}$	0.014	0.052	0.164	0.221	0.217	0.216	0.252	0.254
$\mathbf{1 9 9 7}$	0.018	0.126	0.227	0.244	0.269	0.260	0.269	0.282
$\mathbf{1 9 9 8}$	0.019	0.088	0.194	0.291	0.408	0.483	0.492	0.683
$\mathbf{1 9 9 9}$	0.014	0.076	0.179	0.357	0.398	0.416	0.388	0.414
$\mathbf{2 0 0 0}$	0.007	0.046	0.094	0.155	0.204	0.247	0.207	0.200
$\mathbf{2 0 0 1}$	0.007	0.134	0.164	0.167	0.208	0.292	0.208	0.265
$\mathbf{2 0 0 2}$	0.007	0.052	0.256	0.290	0.294	0.338	0.286	0.258
$\mathbf{2 0 0 3}$	0.010	0.085	0.214	0.349	0.344	0.448	0.335	0.379
$\mathbf{2 0 0 4}$	0.020	0.135	0.288	0.343	0.405	0.362	0.376	0.291
$\mathbf{2 0 0 5}$	0.062	0.082	0.156	0.244	0.277	0.309	0.293	0.222
$\mathbf{2 0 0 6}$	0.019	0.091	0.147	0.196	0.260	0.316	0.299	0.488
$\mathbf{2 0 0 7}$	0.009	0.086	0.183	0.194	0.226	0.286	0.270	0.277
$\mathbf{2 0 0 8}$	0.008	0.050	0.147	0.183	0.253	0.332	0.408	0.378
$\mathbf{2 0 0 9}$	0.010	0.042	0.082	0.160	0.198	0.311	0.506	0.393
$\mathbf{2 0 1 0}$	0.010	0.076	0.129	0.152	0.207	0.281	0.329	0.306
$\mathbf{2 0 1 1}$	0.006	0.049	0.095	0.152	0.192	0.266	0.350	0.404
$\mathbf{2 0 1 2}$	0.010	0.050	0.112	0.159	0.229	0.408	0.457	0.358
$\mathbf{2 0 1 3}$	0.008	0.076	0.171	0.213	0.333	0.544	0.779	0.684
$\mathbf{2 0 1 4}$	0.008	0.046	0.127	0.209	0.274	0.406	0.540	0.480
$\mathbf{2 0 1 5}$	0.009	0.064	0.143	0.252	0.351	0.389	0.616	0.715
$\mathbf{2 0 1 6}$	0.013	0.071	0.145	0.230	0.319	0.424	0.611	0.613

Table 3.8.10: Shetland. Standard errors of estimates of log fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1 9 8 6}$	0.005	0.005	0.010	0.016	0.020	0.026	0.035	0.033
$\mathbf{1 9 8 7}$	0.006	0.013	0.012	0.010	0.014	0.018	0.024	0.025
$\mathbf{1 9 8 8}$	0.012	0.019	0.014	0.015	0.013	0.017	0.021	0.025
$\mathbf{1 9 8 9}$	0.013	0.023	0.018	0.023	0.041	0.046	0.040	0.037
$\mathbf{1 9 9 0}$	0.019	0.018	0.018	0.025	0.026	0.033	0.037	0.035
$\mathbf{1 9 9 1}$	0.007	0.017	0.020	0.026	0.030	0.041	0.040	0.038
$\mathbf{1 9 9 2}$	0.017	0.024	0.026	0.029	0.027	0.036	0.039	0.045
$\mathbf{1 9 9 3}$	0.007	0.023	0.041	0.029	0.027	0.037	0.045	0.039
$\mathbf{1 9 9 4}$	0.006	0.018	0.028	0.028	0.030	0.038	0.053	0.043
$\mathbf{1 9 9 5}$	0.005	0.018	0.027	0.031	0.028	0.035	0.057	0.045
$\mathbf{1 9 9 6}$	0.005	0.012	0.022	0.028	0.028	0.034	0.049	0.051
$\mathbf{1 9 9 7}$	0.007	0.028	0.031	0.031	0.034	0.036	0.048	0.055
$\mathbf{1 9 9 8}$	0.007	0.019	0.025	0.035	0.048	0.059	0.069	0.114
$\mathbf{1 9 9 9}$	0.006	0.016	0.022	0.041	0.048	0.054	0.059	0.073
$\mathbf{2 0 0 0}$	0.003	0.010	0.013	0.020	0.027	0.035	0.033	0.035
$\mathbf{2 0 0 1}$	0.003	0.026	0.020	0.021	0.027	0.039	0.030	0.040
$\mathbf{2 0 0 2}$	0.003	0.011	0.029	0.033	0.037	0.046	0.042	0.037
$\mathbf{2 0 0 3}$	0.004	0.018	0.025	0.039	0.041	0.060	0.050	0.052
$\mathbf{2 0 0 4}$	0.007	0.026	0.031	0.038	0.046	0.048	0.059	0.042
$\mathbf{2 0 0 5}$	0.022	0.017	0.019	0.029	0.034	0.042	0.047	0.036
$\mathbf{2 0 0 6}$	0.007	0.019	0.018	0.023	0.032	0.043	0.047	0.081
$\mathbf{2 0 0 7}$	0.003	0.017	0.021	0.023	0.028	0.039	0.041	0.045
$\mathbf{2 0 0 8}$	0.003	0.010	0.017	0.022	0.031	0.044	0.063	0.058
$\mathbf{2 0 0 9}$	0.004	0.009	0.011	0.019	0.025	0.044	0.082	0.063
$\mathbf{2 0 1 0}$	0.004	0.016	0.016	0.018	0.025	0.037	0.051	0.053
$\mathbf{2 0 1 1}$	0.003	0.011	0.012	0.019	0.024	0.035	0.053	0.070
$\mathbf{2 0 1 2}$	0.004	0.011	0.015	0.021	0.028	0.049	0.065	0.057
$\mathbf{2 0 1 3}$	0.003	0.018	0.025	0.029	0.045	0.070	0.118	0.113
$\mathbf{2 0 1 4}$	0.003	0.012	0.020	0.033	0.043	0.067	0.105	0.109
$\mathbf{2 0 1 5}$	0.004	0.018	0.031	0.044	0.065	0.076	0.147	0.211
$\mathbf{2 0 1 6}$	0.009	0.036	0.055	0.086	0.119	0.161	0.238	0.239

Table 3.8.11: Shetland. Stock summary from the final TSA run.

	Catch Catch $\mathbf{(t)}$	Cstimate $\mathbf{(t)}$	SSB (t)	Recruitment $(\mathbf{1 0 0 0 s})$	Mean F(4-6)
$\mathbf{1 9 8 6}$	368	341	3773	4582	0.076
$\mathbf{1 9 8 7}$	311	323	4067	3965	0.072
$\mathbf{1 9 8 8}$	360	361	3835	2782	0.103
$\mathbf{1 9 8 9}$	535	556	3362	2635	0.144
$\mathbf{1 9 9 0}$	446	412	2937	3391	0.139
$\mathbf{1 9 9 1}$	425	399	3090	6165	0.146
$\mathbf{1 9 9 2}$	521	513	4203	13248	0.185
$\mathbf{1 9 9 3}$	577	604	4873	12077	0.235
$\mathbf{1 9 9 4}$	634	621	5495	11610	0.178
$\mathbf{1 9 9 5}$	764	726	5852	10119	0.181
$\mathbf{1 9 9 6}$	675	681	5580	7461	0.146
$\mathbf{1 9 9 7}$	932	861	5089	4379	0.199
$\mathbf{1 9 9 8}$	926	990	4231	3632	0.191
$\mathbf{1 9 9 9}$	755	768	3734	5345	0.204
$\mathbf{2 0 0 0}$	336	357	3909	8388	0.099
$\mathbf{2 0 0 1}$	496	509	4158	7816	0.155
$\mathbf{2 0 0 2}$	572	592	4457	8746	0.199
$\mathbf{2 0 0 3}$	763	768	4862	8137	0.216
$\mathbf{2 0 0 4}$	895	892	4982	8071	0.256
$\mathbf{2 0 0 5}$	720	692	5429	11421	0.161
$\mathbf{2 0 0 6}$	775	726	6227	13489	0.145
$\mathbf{2 0 0 7}$	861	783	6925	12975	0.154
$\mathbf{2 0 0 8}$	880	837	7442	12031	0.126
$\mathbf{2 0 0 9}$	915	835	8120	10890	0.095
$\mathbf{2 0 1 0}$	1072	942	8181	10515	0.119
$\mathbf{2 0 1 1}$	911	878	7651	10419	0.099
$\mathbf{2 0 1 2}$	1151	1071	8070	12259	0.107
$\mathbf{2 0 1 3}$	1418	1440	7266	7777	0.153
$\mathbf{2 0 1 4}$	1024	999	6249	5898	0.127
$\mathbf{2 0 1 5}$	1099	1063	5689	6772	0.153
$\mathbf{2 0 1 6}$	NA	919	5074	6137	0.149

Table 3.9.1: West of Kintyre. Total catch-at-age numbers (in thousands).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	570	1184	1050	746	878	1011	928	869	1914
$\mathbf{1 9 8 3}$	34	905	1287	1026	815	1030	1104	909	1339
$\mathbf{1 9 8 4}$	155	877	1274	1537	1307	1298	1072	580	1521
$\mathbf{1 9 8 5}$	184	465	641	652	580	600	614	517	1227
$\mathbf{1 9 8 6}$	74	381	527	567	584	434	409	429	1099
$\mathbf{1 9 8 7}$	217	982	893	877	781	488	377	299	958
$\mathbf{1 9 8 8}$	29	378	416	430	309	336	324	293	769
$\mathbf{1 9 8 9}$	1146	787	595	578	378	132	209	138	371
$\mathbf{1 9 9 0}$	194	1350	618	548	409	328	285	120	299
$\mathbf{1 9 9 1}$	115	614	1021	406	350	319	267	163	562
$\mathbf{1 9 9 2}$	28	483	1429	1142	515	307	302	240	695
$\mathbf{1 9 9 3}$	115	1408	1947	1217	775	373	255	180	407
$\mathbf{1 9 9 4}$	10	363	1508	1768	1111	609	361	172	1023
$\mathbf{1 9 9 5}$	17	823	1439	1298	785	449	185	82	407
$\mathbf{1 9 9 6}$	6	1287	2288	1564	1098	628	356	187	456
$\mathbf{1 9 9 7}$	24	1678	2531	1485	1298	838	433	303	451
$\mathbf{1 9 9 8}$	7	560	2260	2043	1806	1440	793	340	625
$\mathbf{1 9 9 9}$	16	932	2036	1712	868	660	498	250	578
$\mathbf{2 0 0 0}$	0	837	1946	1905	1433	1215	803	518	738
$\mathbf{2 0 0 1}$	0	35	1125	1636	1060	767	614	485	845
$\mathbf{2 0 0 2}$	1	168	1147	2251	1529	1045	718	527	550
$\mathbf{2 0 0 3}$	4	735	2951	1489	1317	781	613	407	609
$\mathbf{2 0 0 4}$	28	640	1375	2074	797	672	404	159	457
$\mathbf{2 0 0 5}$	5	686	1564	1471	1076	586	365	164	327
$\mathbf{2 0 0 6}$	0	28	1745	1395	859	518	319	174	92
$\mathbf{2 0 0 7}$	1	337	1287	1293	987	919	580	236	227
$\mathbf{2 0 0 8}$	11	466	1219	1965	1955	1208	721	369	200
$\mathbf{2 0 0 9}$	0	673	1822	1490	1726	1128	641	294	512
$\mathbf{2 0 1 0}$	0	1130	2216	2067	1285	740	497	245	567
$\mathbf{2 0 1 1}$	0	13	920	1960	1689	1217	998	460	845
$\mathbf{2 0 1 2}$	0	62	1125	2858	3705	2997	1576	884	960
$\mathbf{2 0 1 3}$	0	88	959	1719	1901	1733	1108	545	856
$\mathbf{2 0 1 4}$	5	604	1565	2182	2735	2444	1694	995	849
$\mathbf{2 0 1 5}$	$\mathbf{2}$	292	808	1666	1809	1524	986	603	419

Table 3.9.2: West of Kintyre. Mean weights-at-age (total live weight) (kg) in total catch (also used for stock weights).

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.115	0.127	0.138	0.163	0.189	0.198	0.214	0.222	0.249
$\mathbf{1 9 8 3}$	0.092	0.121	0.141	0.148	0.155	0.165	0.182	0.203	0.238
$\mathbf{1 9 8 4}$	0.097	0.124	0.160	0.185	0.198	0.206	0.212	0.225	0.248
$\mathbf{1 9 8 5}$	0.112	0.131	0.161	0.183	0.192	0.197	0.207	0.213	0.230
$\mathbf{1 9 8 6}$	0.105	0.119	0.143	0.170	0.189	0.200	0.199	0.209	0.228
$\mathbf{1 9 8 7}$	0.100	0.127	0.151	0.175	0.193	0.207	0.217	0.223	0.240
$\mathbf{1 9 8 8}$	0.107	0.124	0.136	0.163	0.177	0.191	0.205	0.210	0.231
$\mathbf{1 9 8 9}$	0.116	0.136	0.151	0.170	0.186	0.206	0.203	0.212	0.239
$\mathbf{1 9 9 0}$	0.101	0.132	0.161	0.183	0.200	0.209	0.214	0.228	0.260
$\mathbf{1 9 9 1}$	0.111	0.139	0.165	0.184	0.198	0.208	0.222	0.227	0.255
$\mathbf{1 9 9 2}$	0.120	0.128	0.137	0.165	0.188	0.203	0.214	0.221	0.242
$\mathbf{1 9 9 3}$	0.110	0.125	0.154	0.180	0.201	0.220	0.229	0.229	0.246
$\mathbf{1 9 9 4}$	0.127	0.137	0.147	0.162	0.183	0.214	0.231	0.234	0.270
$\mathbf{1 9 9 5}$	0.136	0.140	0.160	0.183	0.201	0.218	0.232	0.244	0.244
$\mathbf{1 9 9 6}$	0.113	0.132	0.151	0.171	0.193	0.210	0.227	0.234	0.247
$\mathbf{1 9 9 7}$	0.122	0.138	0.159	0.180	0.198	0.212	0.222	0.233	0.220
$\mathbf{1 9 9 8}$	0.097	0.132	0.152	0.170	0.186	0.205	0.217	0.228	0.237
$\mathbf{1 9 9 9}$	0.126	0.143	0.151	0.174	0.195	0.210	0.220	0.228	0.236
$\mathbf{2 0 0 0}$	0.115	0.134	0.157	0.169	0.187	0.199	0.213	0.228	0.248
$\mathbf{2 0 0 1}$	0.111	0.128	0.152	0.172	0.191	0.207	0.213	0.216	0.232
$\mathbf{2 0 0 2}$	0.137	0.146	0.148	0.164	0.187	0.201	0.210	0.214	0.236
$\mathbf{2 0 0 3}$	0.123	0.138	0.145	0.160	0.187	0.203	0.219	0.227	0.248
$\mathbf{2 0 0 4}$	0.123	0.147	0.151	0.165	0.187	0.207	0.226	0.233	0.244
$\mathbf{2 0 0 5}$	0.146	0.142	0.162	0.177	0.191	0.214	0.244	0.253	0.280
$\mathbf{2 0 0 6}$	0.131	0.118	0.141	0.161	0.197	0.220	0.244	0.276	0.274
$\mathbf{2 0 0 7}$	0.146	0.136	0.158	0.182	0.196	0.199	0.221	0.258	0.263
$\mathbf{2 0 0 8}$	0.114	0.128	0.152	0.171	0.193	0.211	0.234	0.266	0.291
$\mathbf{2 0 0 9}$	0.134	0.131	0.141	0.152	0.165	0.187	0.202	0.214	0.247
$\mathbf{2 0 1 0}$	0.134	0.138	0.149	0.158	0.177	0.194	0.204	0.219	0.245
$\mathbf{2 0 1 1}$	0.134	0.130	0.137	0.150	0.165	0.181	0.194	0.197	0.210
$\mathbf{2 0 1 2}$	0.134	0.128	0.132	0.146	0.162	0.180	0.193	0.205	0.236
$\mathbf{2 0 1 3}$	0.134	0.131	0.145	0.162	0.180	0.200	0.218	0.241	0.262
$\mathbf{2 0 1 4}$	0.114	0.133	0.141	0.156	0.175	0.193	0.209	0.228	0.256
$\mathbf{2 0 1 5}$	0.100	0.120	0.137	0.152	0.168	0.183	0.200	0.217	0.241

Table 3.9.3: West of Kintyre. Research-vessel survey data. Catch rates (numbers hour ${ }^{-1}$ metre $^{-1}$) by age and year.

Aora

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 9 3}$	0.822	10.654	10.012	5.947	4.408	1.853	1.240	1.121	3.482
$\mathbf{1 9 9 4}$	0.130	4.297	13.524	9.841	4.725	3.702	1.228	0.781	2.214
$\mathbf{1 9 9 5}$	0.402	10.123	11.616	8.879	4.344	2.143	1.186	0.536	1.703
$\mathbf{1 9 9 6}$	0.124	4.136	9.105	7.153	5.485	2.787	1.367	0.958	2.112
$\mathbf{1 9 9 7}$	0.243	5.693	12.584	9.588	5.805	3.708	1.779	0.918	1.704
$\mathbf{1 9 9 8}$	0.206	7.880	11.707	9.981	5.947	4.371	2.139	1.201	1.651
$\mathbf{1 9 9 9}$	0.054	4.587	6.804	7.135	5.374	4.265	3.263	1.824	1.958
$\mathbf{2 0 0 0}$	0.048	6.632	13.231	8.581	5.817	4.155	2.828	1.486	1.454
$\mathbf{2 0 0 1}$	0.797	2.188	10.229	8.278	4.241	2.646	2.019	1.221	1.883
$\mathbf{2 0 0 2}$	0.017	9.905	5.126	10.234	7.602	3.446	2.424	1.229	4.312

Aora II

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 3}$	0.417	5.605	13.007	4.898	6.122	3.057	1.932	1.605	2.249
$\mathbf{2 0 0 4}$	1.181	5.279	6.348	9.705	3.563	3.844	2.119	1.622	2.438
$\mathbf{2 0 0 5}$	0.153	9.745	10.004	6.772	6.167	3.338	2.273	1.477	2.129
$\mathbf{2 0 0 6}$	0.040	4.387	9.803	12.547	8.684	4.902	3.833	2.380	2.350
$\mathbf{2 0 0 7}$	0.022	2.186	8.018	8.446	7.754	4.986	3.471	2.724	3.723

Alba

	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{2 0 0 8}$	0.066	2.122	5.667	7.072	5.686	3.923	2.018	1.452	2.056
$\mathbf{2 0 0 9}$	0.070	4.600	14.070	8.960	5.000	3.300	2.320	0.740	4.620
$\mathbf{2 0 1 0}$	0.030	9.710	14.230	8.260	3.730	2.170	0.980	0.250	4.020
$\mathbf{2 0 1 1}$	0.010	1.460	8.520	13.540	7.420	5.040	2.050	1.440	4.310
$\mathbf{2 0 1 2}$	0.000	3.420	10.000	11.220	6.750	4.070	2.390	1.350	2.970
$\mathbf{2 0 1 3}$	0.030	3.810	11.310	10.080	6.270	4.070	2.060	1.210	2.630
$\mathbf{2 0 1 4}$	0.040	2.110	8.600	11.190	7.350	4.640	2.810	1.250	3.170
$\mathbf{2 0 1 5}$	0.14	3.26	9.77	9.42	9.82	7.65	3.79	1.77	4.51
$\mathbf{2 0 1 6}$	0.01	1.94	15.6	8.14	5.88	5.45	3.16	1.77	5.79

Table 3.9.4: West of Kintyre. T SA final assessment input settings.

Quantity	Setting	Notes
Landings	Ages 3-10+	
	Years 1982--2015	
Survey:Aora		1993 \& 1994 Aora survey indices omitted -
	Years 1993-2002	have much higher catchability than the rest of the time series.
Survey: Aora II	Ages 3-9	
	Years 2003-2007	
Survey:Alba	Ages 3-9	
	Years 2008-2016	
Maturity	100 \% for age 3 onwards	
Natural mortality	Fixed at 0.15 for all ages	
Stock weights	Equal to catch weights	
F plateau	Age 8	
Recruitment	Modelled as random walk	
Annual survey CV multiplier	Adjusted according to the number of survey hauls	Allows for greater variability when fewer hauls
Survey age CV multiplier: Aora	(2.4,2.0,1.8,1,1,1,1.8)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Aora II	(2.4,2.0,1.8,1,1,1,1.8)	Allows for greater variability at younger \& older ages
Survey age CV multiplier: Alba	(1.6,1.6,1,1,1,1.6,1.6)	Allows for greater variability at younger \& older ages
F variability	1999: CV multiplier $=3.0$	Allows greater variability in F in this year sudden decrease in landings associated with ASP/PSP closures
Catch CV multiplier	(3.0,1.6,1,1,1,1,1.6,1.6)	Allows for greater variability at ages 3,4,9 \& 10+
Down-weighting single points	Catch 1989, age 7, cv multiplier = 3 Alba 2010, age 3, cv multiplier $=$ 3	Catch outlier Survey outlier

Table 3.9.5: West of Kintyre. Final TSA run parameter estimates.

Parameter	Notation	Description	2016
Initial fishing mortality	$F(3,1982)$	Fishing mortality at age a in year y	0.077
	$F(4,1982)$		0.130
	$F(8,1982)$		0.320
Fishing mortality standard deviations	σ_{F}	Transitory changes in overall F	0
	σ_{u}	Persistent changes in selection (age effect in F)	0.089
	σ_{V}	Transitory changes in the year effect in F	0.284
	σ_{Y}	Persistent changes in the year effect in F	0
Measurement cv	$\mathrm{CV}_{\text {catch }}$	Coefficient of variation of catch-at-age data	0.180
Recruitment		Log mean recruitment at start	2.115
	$\mathrm{S}_{\text {rw }}$	Standard deviation of random walk	0.142
	$\mathrm{cV}_{\text {rec }}$	Coefficient of variation of recruitment curve	0.080
Survey selectivities: Aora	$\Phi_{\mathrm{a} 1}(3)$	Survey selectivity at age a	0.647
	$\Phi_{\mathrm{a} 1}(4)$		1.168
	$\Phi_{\mathrm{a} 1}(5)$		1.368
	$\Phi_{\mathrm{a} 1}(6)$		1.369
	$\Phi_{\mathrm{a} 1}(7)$		1.365
	$\Phi_{\mathrm{a} 1}(8)$		1.337
	$\Phi_{\mathrm{a} 1}(9)$		1.202
Survey catchability standard deviations: Aora	$\sigma_{a 1 \Omega}$	Transitory changes in survey catchability	0.153
	$\sigma_{a 1 \beta}$	Persistent changes in survey catchability	$0{ }^{1}$
Survey measurement coefficients of variation: Aora	$\sigma_{\text {a1survey }}$	Coefficient of variation controlling gamma type dispersion	0.114
	$\eta_{\text {a1survey }}$	Coefficient of variation controlling poisson type dispersion	0.0006
Survey selectivities: Aora II	$\Phi_{\mathrm{a} 2}(3)$	Survey selectivity at age a	0.463
	$\Phi_{\mathrm{a} 2}(4)$		0.997
	$\Phi_{\mathrm{a} 2}(5)$		1.333
	$\Phi_{\mathrm{a} 2}(6)$		1.766
	$\Phi_{\mathrm{a} 2}(7)$		2.008
	$\Phi_{\mathrm{a} 2}(8)$		2.857
	$\Phi_{\mathrm{a} 2}(9)$		3.304

[^7]| Survey catchability standard deviations: Aora II | $\sigma_{\mathrm{a} 2 \Omega}$ | Transitory changes in survey catchability | 0.068 |
| :---: | :---: | :---: | :---: |
| | $\sigma_{\text {a } 2 \beta}$ | Persistent changes in survey catchability | $0{ }^{1}$ |
| Survey measurement coefficients of variation: Aora I | $\sigma_{\text {a2survey }}$ | Coefficient of variation controlling gamma type dispersion | 0.150 |
| | $\eta_{\text {a2survey }}$ | Coefficient of variation controlling poisson type dispersion | 0.010 |
| Survey selectivities: Alba | $\Phi_{\mathrm{a}}(3)$ | Survey selectivity at age a | 0.179 |
| | $\Phi_{\mathrm{a}}(4)$ | | 0.734 |
| | $\Phi_{\mathrm{a}}(5)$ | | 0.849 |
| | $\Phi_{\mathrm{a}}(6)$ | | 0.804 |
| | $\Phi_{\mathrm{a}}(7)$ | | 0.967 |
| | $\Phi_{\mathrm{a}}(8)$ | | 0.854 |
| | $\Phi_{\mathrm{a}}(9)$ | | 0.885 |
| Survey catchability standard deviations: Alba | $\sigma_{\mathrm{a} \Omega}$ | Transitory changes in survey catchability | 0.122 |
| | $\sigma_{a \beta}$ | Persistent changes in survey catchability | 0^{1} |
| Survey measurement coefficients of variation: Alba | $\sigma_{\text {asurvey }}$ | Coefficient of variation controlling gamma type dispersion | 0.181 |
| | $\eta_{\text {asurvey }}$ | Coefficient of variation controlling poisson type dispersion | 0.010 |

[^8]Table 3.9.6: West of Kintyre. Estimated population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	9.541	8.984	7.264	6.458	5.558	4.350	3.559	6.953
$\mathbf{1 9 8 3}$	8.229	7.721	6.964	5.462	4.740	3.902	2.893	7.088
$\mathbf{1 9 8 4}$	7.486	6.591	5.801	5.064	3.869	3.162	2.471	6.315
$\mathbf{1 9 8 5}$	6.921	5.690	4.511	3.694	3.170	2.201	1.708	4.763
$\mathbf{1 9 8 6}$	6.627	5.526	4.268	3.254	2.611	2.158	1.430	4.205
$\mathbf{1 9 8 7}$	6.568	5.321	4.186	3.116	2.318	1.818	1.444	3.767
$\mathbf{1 9 8 8}$	5.148	5.169	3.845	2.893	2.106	1.545	1.166	3.348
$\mathbf{1 9 8 9}$	5.584	4.143	3.893	2.801	2.084	1.493	1.065	3.113
$\mathbf{1 9 9 0}$	9.056	4.528	3.105	2.840	2.037	1.492	1.054	2.947
$\mathbf{1 9 9 1}$	9.941	7.360	3.369	2.238	2.054	1.463	1.062	2.832
$\mathbf{1 9 9 2}$	11.968	8.087	5.500	2.436	1.607	1.475	1.042	2.761
$\mathbf{1 9 9 3}$	14.205	9.594	5.766	3.736	1.649	1.093	0.995	2.561
$\mathbf{1 9 9 4}$	15.124	11.588	6.887	3.923	2.517	1.112	0.738	2.400
$\mathbf{1 9 9 5}$	14.703	11.957	7.742	4.217	2.327	1.497	0.649	1.836
$\mathbf{1 9 9 6}$	14.282	12.150	8.936	5.547	2.960	1.623	1.046	1.738
$\mathbf{1 9 9 7}$	13.230	11.755	8.831	6.251	3.794	1.988	1.093	1.877
$\mathbf{1 9 9 8}$	11.630	11.025	8.535	6.154	4.264	2.521	1.322	1.977
$\mathbf{1 9 9 9}$	12.574	9.521	7.381	5.253	3.709	2.459	1.455	1.908
$\mathbf{2 0 0 0}$	12.149	10.465	7.052	5.081	3.619	2.488	1.636	2.237
$\mathbf{2 0 0 1}$	9.838	9.972	7.175	4.228	2.990	2.034	1.362	2.117
$\mathbf{2 0 0 2}$	13.617	8.138	7.216	4.641	2.655	1.818	1.180	2.016
$\mathbf{2 0 0 3}$	12.889	11.071	5.530	4.080	2.443	1.318	0.860	1.508
$\mathbf{2 0 0 4}$	13.711	10.539	7.509	3.292	2.297	1.272	0.642	1.159
$\mathbf{2 0 0 5}$	14.946	11.367	7.636	4.848	2.085	1.360	0.717	1.015
$\mathbf{2 0 0 6}$	15.254	12.492	8.516	5.222	3.206	1.318	0.829	1.055
$\mathbf{2 0 0 7}$	15.969	12.830	9.672	6.130	3.637	2.150	0.867	1.239
$\mathbf{2 0 0 8}$	19.590	13.395	9.860	6.906	4.145	2.341	1.370	1.343
$\mathbf{2 0 0 9}$	21.885	16.328	10.093	6.769	4.284	2.450	1.380	1.601
$\mathbf{2 0 1 0}$	21.678	18.385	12.731	7.288	4.465	2.698	1.520	1.852
$\mathbf{2 0 1 1}$	20.294	18.422	14.857	9.594	5.127	3.020	1.779	2.227
$\mathbf{2 0 1 2}$	19.893	17.109	14.759	11.043	6.600	3.312	1.827	2.432
$\mathbf{2 0 1 3}$	17.861	16.539	12.881	9.888	6.313	3.258	1.476	1.905
$\mathbf{2 0 1 4}$	16.427	15.071	13.235	9.577	6.708	3.908	1.858	1.937
$\mathbf{2 0 1 5}$	17.482	13.747	11.715	9.310	5.926	3.640	1.882	1.836
$\mathbf{2 0 1 6}$	15.940	14.766	11.052	8.770	6.431	3.761	2.161	2.213

Table 3.9.7: West of Kintyre. Standard errors of estimates of population abundance by age and year (in millions) from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.796	0.827	0.516	0.524	0.545	0.486	0.730	1.357
$\mathbf{1 9 8 3}$	0.770	0.636	0.627	0.393	0.388	0.392	0.336	0.965
$\mathbf{1 9 8 4}$	0.720	0.602	0.473	0.470	0.292	0.281	0.273	0.726
$\mathbf{1 9 8 5}$	0.683	0.533	0.416	0.336	0.328	0.198	0.185	0.568
$\mathbf{1 9 8 6}$	0.587	0.545	0.408	0.320	0.260	0.245	0.149	0.515
$\mathbf{1 9 8 7}$	0.511	0.471	0.422	0.316	0.246	0.197	0.181	0.464
$\mathbf{1 9 8 8}$	0.401	0.399	0.355	0.322	0.235	0.182	0.145	0.434
$\mathbf{1 9 8 9}$	0.388	0.318	0.308	0.273	0.248	0.180	0.138	0.401
$\mathbf{1 9 9 0}$	0.532	0.306	0.241	0.236	0.208	0.178	0.136	0.370
$\mathbf{1 9 9 1}$	0.587	0.417	0.232	0.181	0.179	0.157	0.134	0.337
$\mathbf{1 9 9 2}$	0.658	0.460	0.313	0.174	0.135	0.134	0.118	0.315
$\mathbf{1 9 9 3}$	0.736	0.510	0.321	0.221	0.121	0.095	0.096	0.284
$\mathbf{1 9 9 4}$	0.815	0.580	0.362	0.229	0.159	0.087	0.069	0.255
$\mathbf{1 9 9 5}$	0.844	0.620	0.392	0.239	0.150	0.113	0.061	0.207
$\mathbf{1 9 9 6}$	0.885	0.684	0.468	0.293	0.175	0.111	0.085	0.188
$\mathbf{1 9 9 7}$	0.874	0.703	0.486	0.332	0.210	0.127	0.083	0.183
$\mathbf{1 9 9 8}$	0.808	0.688	0.484	0.353	0.236	0.153	0.095	0.182
$\mathbf{1 9 9 9}$	0.823	0.615	0.426	0.313	0.223	0.154	0.108	0.181
$\mathbf{2 0 0 0}$	0.753	0.662	0.431	0.302	0.225	0.164	0.119	0.213
$\mathbf{2 0 0 1}$	0.573	0.588	0.432	0.276	0.199	0.150	0.117	0.223
$\mathbf{2 0 0 2}$	0.785	0.461	0.422	0.298	0.189	0.137	0.106	0.231
$\mathbf{2 0 0 3}$	0.784	0.638	0.319	0.270	0.194	0.121	0.092	0.211
$\mathbf{2 0 0 4}$	0.887	0.638	0.425	0.190	0.162	0.117	0.075	0.179
$\mathbf{2 0 0 5}$	0.939	0.733	0.456	0.284	0.125	0.108	0.079	0.159
$\mathbf{2 0 0 6}$	0.885	0.781	0.540	0.319	0.198	0.087	0.076	0.150
$\mathbf{2 0 0 7}$	0.855	0.743	0.598	0.405	0.240	0.148	0.067	0.151
$\mathbf{2 0 0 8}$	0.993	0.714	0.552	0.439	0.296	0.175	0.110	0.145
$\mathbf{2 0 0 9}$	1.146	0.827	0.527	0.399	0.311	0.210	0.130	0.172
$\mathbf{2 0 1 0}$	1.464	0.963	0.644	0.403	0.284	0.221	0.154	0.207
$\mathbf{2 0 1 1}$	1.316	1.225	0.753	0.491	0.287	0.202	0.160	0.242
$\mathbf{2 0 1 2}$	1.489	1.098	0.941	0.583	0.373	0.219	0.151	0.260
$\mathbf{2 0 1 3}$	1.721	1.233	0.809	0.656	0.401	0.248	0.140	0.229
$\mathbf{2 0 1 4}$	2.163	1.456	0.997	0.637	0.481	0.293	0.181	0.253
$\mathbf{2 0 1 5}$	2.657	1.820	1.169	0.780	0.478	0.344	0.217	0.278
$\mathbf{2 0 1 6}$	3.285	2.257	1.511	0.971	0.649	0.399	0.277	0.375

Table 3.9.8: West of Kintyre. Estimates of fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.062	0.108	0.129	0.154	0.202	0.254	0.254	0.254
$\mathbf{1 9 8 3}$	0.077	0.139	0.171	0.186	0.251	0.308	0.308	0.308
$\mathbf{1 9 8 4}$	0.126	0.229	0.302	0.324	0.414	0.468	0.468	0.468
$\mathbf{1 9 8 5}$	0.075	0.138	0.178	0.197	0.238	0.285	0.285	0.285
$\mathbf{1 9 8 6}$	0.070	0.131	0.168	0.192	0.215	0.258	0.258	0.258
$\mathbf{1 9 8 7}$	0.087	0.169	0.217	0.243	0.259	0.298	0.298	0.298
$\mathbf{1 9 8 8}$	0.065	0.133	0.166	0.178	0.195	0.225	0.225	0.225
$\mathbf{1 9 8 9}$	0.063	0.137	0.170	0.175	0.188	0.204	0.204	0.204
$\mathbf{1 9 9 0}$	0.059	0.141	0.175	0.177	0.184	0.192	0.192	0.192
$\mathbf{1 9 9 1}$	0.055	0.145	0.178	0.184	0.185	0.193	0.193	0.193
$\mathbf{1 9 9 2}$	0.066	0.191	0.242	0.248	0.245	0.250	0.250	0.250
$\mathbf{1 9 9 3}$	0.060	0.182	0.236	0.246	0.246	0.245	0.245	0.245
$\mathbf{1 9 9 4}$	0.082	0.255	0.341	0.372	0.368	0.390	0.390	0.390
$\mathbf{1 9 9 5}$	0.043	0.142	0.184	0.204	0.211	0.210	0.210	0.210
$\mathbf{1 9 9 6}$	0.047	0.169	0.205	0.230	0.249	0.246	0.246	0.246
$\mathbf{1 9 9 7}$	0.045	0.173	0.212	0.230	0.259	0.258	0.258	0.258
$\mathbf{1 9 9 8}$	0.063	0.253	0.337	0.358	0.402	0.400	0.400	0.400
$\mathbf{1 9 9 9}$	0.037	0.153	0.225	0.224	0.250	0.259	0.259	0.259
$\mathbf{2 0 0 0}$	0.055	0.230	0.362	0.381	0.427	0.454	0.454	0.454
$\mathbf{2 0 0 1}$	0.041	0.173	0.287	0.315	0.348	0.394	0.394	0.394
$\mathbf{2 0 0 2}$	0.056	0.250	0.420	0.477	0.538	0.588	0.588	0.588
$\mathbf{2 0 0 3}$	0.051	0.238	0.372	0.423	0.493	0.561	0.561	0.561
$\mathbf{2 0 0 4}$	0.037	0.172	0.288	0.308	0.374	0.420	0.420	0.420
$\mathbf{2 0 0 5}$	0.030	0.139	0.231	0.264	0.309	0.346	0.346	0.346
$\mathbf{2 0 0 6}$	0.023	0.107	0.179	0.213	0.251	0.269	0.269	0.269
$\mathbf{2 0 0 7}$	0.024	0.109	0.187	0.243	0.291	0.302	0.302	0.302
$\mathbf{2 0 0 8}$	0.030	0.125	0.225	0.328	0.376	0.379	0.379	0.379
$\mathbf{2 0 0 9}$	0.024	0.098	0.175	0.267	0.313	0.328	0.328	0.328
$\mathbf{2 0 1 0}$	0.018	0.071	0.132	0.194	0.234	0.267	0.267	0.267
$\mathbf{2 0 1 1}$	0.020	0.076	0.147	0.222	0.286	0.352	0.352	0.352
$\mathbf{2 0 1 2}$	0.034	0.123	0.250	0.408	0.554	0.657	0.657	0.657
$\mathbf{2 0 1 3}$	0.020	0.072	0.144	0.237	0.328	0.412	0.412	0.412
$\mathbf{2 0 1 4}$	0.028	0.103	0.202	0.329	0.462	0.584	0.584	0.584
$\mathbf{2 0 1 5}$	0.019	0.069	0.141	0.222	0.307	0.376	0.376	0.376
$\mathbf{2 0 1 6}$	0.026	0.095	0.195	0.307	0.425	0.519	0.519	0.519

Table 3.9.9: West of Kintyre. Standard errors of estimates of log fishing mortality by age and year from the final TSA run.

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 2}$	0.009	0.015	0.016	0.020	0.026	0.032	0.032	0.032
$\mathbf{1 9 8 3}$	0.012	0.020	0.022	0.025	0.034	0.041	0.041	0.041
$\mathbf{1 9 8 4}$	0.021	0.032	0.037	0.040	0.053	0.059	0.059	0.059
$\mathbf{1 9 8 5}$	0.014	0.021	0.024	0.027	0.033	0.039	0.039	0.039
$\mathbf{1 9 8 6}$	0.013	0.020	0.023	0.026	0.030	0.035	0.035	0.035
$\mathbf{1 9 8 7}$	0.017	0.026	0.029	0.032	0.036	0.040	0.040	0.040
$\mathbf{1 9 8 8}$	0.013	0.021	0.022	0.025	0.028	0.031	0.031	0.031
$\mathbf{1 9 8 9}$	0.013	0.022	0.023	0.024	0.031	0.029	0.029	0.029
$\mathbf{1 9 9 0}$	0.012	0.022	0.023	0.024	0.026	0.028	0.028	0.028
$\mathbf{1 9 9 1}$	0.011	0.022	0.024	0.024	0.025	0.027	0.027	0.027
$\mathbf{1 9 9 2}$	0.013	0.029	0.030	0.032	0.032	0.033	0.033	0.033
$\mathbf{1 9 9 3}$	0.012	0.027	0.030	0.031	0.032	0.031	0.031	0.031
$\mathbf{1 9 9 4}$	0.016	0.037	0.040	0.044	0.045	0.047	0.047	0.047
$\mathbf{1 9 9 5}$	0.009	0.022	0.024	0.026	0.028	0.027	0.027	0.027
$\mathbf{1 9 9 6}$	0.010	0.025	0.026	0.029	0.032	0.031	0.031	0.031
$\mathbf{1 9 9 7}$	0.009	0.026	0.027	0.029	0.033	0.033	0.033	0.033
$\mathbf{1 9 9 8}$	0.013	0.036	0.040	0.042	0.046	0.048	0.048	0.048
$\mathbf{1 9 9 9}$	0.007	0.023	0.028	0.029	0.032	0.033	0.033	0.033
$\mathbf{2 0 0 0}$	0.011	0.033	0.043	0.045	0.050	0.053	0.053	0.053
$\mathbf{2 0 0 1}$	0.008	0.026	0.035	0.039	0.043	0.047	0.047	0.047
$\mathbf{2 0 0 2}$	0.011	0.036	0.048	0.055	0.062	0.067	0.067	0.067
$\mathbf{2 0 0 3}$	0.010	0.034	0.043	0.049	0.059	0.065	0.065	0.065
$\mathbf{2 0 0 4}$	0.008	0.025	0.035	0.038	0.046	0.051	0.051	0.051
$\mathbf{2 0 0 5}$	0.006	0.021	0.029	0.033	0.039	0.043	0.043	0.043
$\mathbf{2 0 0 6}$	0.005	0.017	0.023	0.028	0.033	0.035	0.035	0.035
$\mathbf{2 0 0 7}$	0.005	0.017	0.024	0.032	0.038	0.039	0.039	0.039
$\mathbf{2 0 0 8}$	0.006	0.019	0.028	0.041	0.048	0.048	0.048	0.048
$\mathbf{2 0 0 9}$	0.005	0.015	0.022	0.034	0.041	0.042	0.042	0.042
$\mathbf{2 0 1 0}$	0.004	0.011	0.017	0.025	0.031	0.035	0.035	0.035
$\mathbf{2 0 1 1}$	0.004	0.012	0.019	0.029	0.037	0.045	0.045	0.045
$\mathbf{2 0 1 2}$	0.008	0.019	0.030	0.047	0.064	0.077	0.077	0.077
$\mathbf{2 0 1 3}$	0.005	0.012	0.019	0.031	0.044	0.057	0.057	0.057
$\mathbf{2 0 1 4}$	0.007	0.018	0.028	0.045	0.063	0.083	0.083	0.083
$\mathbf{2 0 1 5}$	0.005	0.014	0.024	0.037	0.051	0.063	0.063	0.063
$\mathbf{2 0 1 6}$	0.009	0.031	0.062	0.097	0.134	0.167	0.167	0.167

Table 3.9.10: West of Kintyre. Stock summary from the final TSA run. Catch estimate and Mean F in 2016 are model forecasts.

	Catch (t)	Catch estimate (t)	SSB (t)	Recruitment $(1000 \mathrm{~s})$	Mean $\mathrm{F}(4-6)$
$\mathbf{1 9 8 2}$	1651	1386	9407	9541	0.130
$\mathbf{1 9 8 3}$	1443	1379	7728	8229	0.165
$\mathbf{1 9 8 4}$	1857	2041	7647	7486	0.285
$\mathbf{1 9 8 5}$	1032	976	5898	6921	0.171
$\mathbf{1 9 8 6}$	836	793	5127	6627	0.164
$\mathbf{1 9 8 7}$	1044	922	5074	6568	0.209
$\mathbf{1 9 8 8}$	598	599	4214	5148	0.159
$\mathbf{1 9 8 9}$	553	577	4271	5584	0.161
$\mathbf{1 9 9 0}$	694	603	4811	9056	0.164
$\mathbf{1 9 9 1}$	704	660	5372	9941	0.169
$\mathbf{1 9 9 2}$	890	859	5537	11968	0.227
$\mathbf{1 9 9 3}$	1133	979	6519	14205	0.222
$\mathbf{1 9 9 4}$	1291	1495	7216	15124	0.323
$\mathbf{1 9 9 5}$	1001	941	7691	14703	0.177
$\mathbf{1 9 9 6}$	1363	1152	7976	14282	0.201
$\mathbf{1 9 9 7}$	1602	1276	8435	13230	0.205
$\mathbf{1 9 9 8}$	1794	1820	8007	11630	0.316
$\mathbf{1 9 9 9}$	1348	1121	7634	12574	0.200
$\mathbf{2 0 0 0}$	1721	1741	7584	12149	0.324
$\mathbf{2 0 0 1}$	1250	1300	6658	9838	0.258
$\mathbf{2 0 0 2}$	1453	1703	6888	13617	0.382
$\mathbf{2 0 0 3}$	1551	1425	6394	12889	0.344
$\mathbf{2 0 0 4}$	1170	1110	6647	13711	0.256
$\mathbf{2 0 0 5}$	1165	1068	7488	14946	0.211
$\mathbf{2 0 0 6}$	908	926	7503	15254	0.166
$\mathbf{2 0 0 7}$	1108	1179	8892	15969	0.180
$\mathbf{2 0 0 8}$	1540	1592	9750	19590	0.226
$\mathbf{2 0 0 9}$	1386	1242	9807	21885	0.180
$\mathbf{2 0 1 0}$	1478	1125	11239	21678	0.132
$\mathbf{2 0 1 1}$	1382	1396	11307	20294	0.148
$\mathbf{2 0 1 2}$	2428	2511	11520	19893	0.261
$\mathbf{2 0 1 3}$	1715	1625	11431	17861	0.151
$\mathbf{2 0 1 4}$	2385	2189	11054	16427	0.211
$\mathbf{2 0 1 5}$	1412	1379	9997	17482	0.144
$\mathbf{2 0 1 6}$	NA	1956	10451	15940	0.199

7 Figures

Figure 2.1.1: Scottish scallop assesment areas

Figure 3.1.1: Total reported landings by assessment area (tonnes). Some UK (non Scotland) landings pre 2000 may have been taken elsewhere in Division VIIa (i.e. out-with the Irish Sea assessment area). Note differences in scales of landings plots.

Figure 3.1.2: Spatial distribution of scallop landings (tonnes) into Scotland in 2015.

Figure 3.1.3: Spatial distribution of dive caught scallop landings (tonnes) into Scotland in 2015.

Figure 3.3.1: East Coast. Total catch-at-age numbers (in thousands).

Figure 3.3.2: East Coast. Mean weights-at-age (kg) in total catch (also used for stock weights).

Figure 3.3.3: East Coast. Catch at age (by proportion): mean standardised over time by age class. Dark shaded circles represent above average values and white circles below average.

Figure 3.3.4: North Sea survey. Distribution of dredge survey catch rates (2013-2016).

Figure 3.3.5: East Coast. Mean standardised survey catch at age. Dark shaded circles represent above average values and white circles below average.

Figure 3.3.6: East Coast. Mean standardised survey and commercial catch at age comparison. Upper plot: Clupea survey, lower plot: Alba survey.

Figure 3.3.7: East Coast. TSA stock summaries from the final TSA run. Catch and SSB are in terms of live weight (thousand tonnes) and recruitment (age 3) in millions. Catch figure shows both model estimates (red line) and input data (points). Estimates are plotted with approximate 95 \% confidence intervals. Unfilled circle (catch data): data not included in the assessment.

Figure 3.3.8: East Coast. Standardised catch residuals by age from the final TSA run.

Figure 3.3.9: East Coast. Standardised survey residuals by age for the Clupea survey from the final TSA run.

Figure 3.3.10: East Coast. Standardised survey residuals by age for the Alba survey from the final TSA run.

Figure 3.3.11: East Coast. Stock-recruit plot from the final TSA run. Recruitment (age 3) is in millions and SSB in thousand tonnes. Values are labelled with year class.

Figure 3.3.12: East Coast. Estimated recruitment time-series from the final TSA assessment. Red points give estimated values with grey bars indicating approximate pointwise 95% confidence intervals. The black line (also with $95 \% \mathrm{CI}$) shows the underlying random-walk recruitment model estimated by TSA.

Figure 3.3.13: East Coast. Estimates of catch, mean F_{4-6}, SSB and recruitment with final run 95 \% confidence intervals (grey shading) from retrospective TSA runs. Catch and SSB are in thousand tonnes and recruitment (age 3) in millions.

Figure 3.3.14: East Coast. Comparison of final assessment results with previous empirical survey based assessment conducted in 2011. Recruitment and SSB are mean standardised (over the common time period) to allow for comparison between results in live weight (current assessment) and survey indices (2011 assessment).

Figure 3.3.15: North Sea survey. VMS effort intensity (UK vessels) overlaid with survey station locations (shown as crosses).

Figure 3.5.1: North East. Total catch-at-age numbers (in thousands).

Figure 3.5.2: North East. Mean weights-at-age (kg) in total catch (also used for stock weights).

Figure 3.5.3: North East. Catch at age (by proportion): mean standardised over time by age class. Dark shaded circles represent above average values and white circles below average.

Figure 3.5.4: North East. Mean standardised survey catch at age. Dark shaded circles represent above average values and white circles below average.

Figure 3.5.5: North East. Mean standardised survey and commercial catch at age comparison. Upper plot: Clupea survey, lower plot: Alba survey.

Figure 3.5.6: North East. TSA stock summaries from the final run. Catch and SSB are in terms of live weight (thousand tonnes) and recruitment (age 3) in millions. Catch figure shows both model estimates (red line) and input data (points).
Estimates are plotted with approximate 95 \% confidence intervals.

Figure 3.5.7: North East. Standardised catch residuals by age from the final TSA run.

Figure 3.5.8: North East. Standardised survey residuals by age (Clupea survey) from the final TSA run.

Figure 3.5.9: North East. Standardised survey residuals by age (Alba survey) from the final TSA run.

Figure 3.5.10: North East. Stock-recruit plot from the final TSA run. Recruitment is in millions (age 3) and SSB in thousand tonnes. Values are labelled with year class.

Figure 3.5.11: North East. Estimated recruitment time-series from the final TSA assessment. Red points give estimated values with grey bars indicating approximate pointwise 95\% confidence intervals. The black line (also with $95 \% \mathrm{CI}$) shows the underlying random-walk recruitment model estimated by TSA.

Figure 3.5.12: North East. Estimates of Catch, Mean F_{4-6}, SSB and Recruitment with final run 95% confidence intervals (grey shading) from retrospective TSA runs. Catch and SSB are in thousand tonnes and recruitment in millions.

Figure 3.5.13: North East. Comparison of final assessment results with previous assessment conducted in 2011. Recruitment is in thousands. SSB is shown as mean standardised (over the common time period) to allow for comparison between results in live weight (current assessment) and muscle weight (2011 assessment).

Figure 3.6.1: North West. Total catch-at-age numbers (in thousands).

Figure 3.6.2: North West. Mean weights-at-age (kg) in total catch (also used for stock weights).

Figure 3.6.3: North West. Catch at age (by proportion): mean standardised over time by age class. Dark shaded circles represent above average values and white circles below average.

Figure 3.6.4: West coast survey. Distribution of dredge survey catch rates (2013-2016).

Figure 3.6.5: North West. Mean standardised survey catch at age. Dark shaded circles represent above average values and white circles below average.

Figure 3.6.6: North West. Mean standardised survey and commercial catch at age comparison. Upper plot: Aora survey, middle plot: Aora II survey, lower plot: Alba survey.

Figure 3.6.7: North West. TSA stock summaries from the final TSA run. Catch and SSB are in thousand tonnes and recruitment (age 3) in millions. Catch figure shows both model estimates (red line) and input data (points). Estimates are plotted with approximate 95 \% confidence intervals. Unfilled circle (catch data): data not included in the assessment.

Figure 3.6.8: North West. Standardised catch residuals by age from the final TSA run.

Figure 3.6.9: North West. Standardised survey residuals by age (Aora survey) from the final TSA run.

Figure 3.6.10: North West. Standardised survey residuals by age (Aora II survey) from the final TSA run.

Figure 3.6.11: North West. Standardised survey residuals by age (Alba survey) from the final TSA run.

Figure 3.6.12: North West. Stock-recruit plot from the final TSA run. Recruitment (age 3) is in millions and SSB in thousand tonnes. Values are labelled with year class.

Figure 3.6.13: North West. Estimated recruitment time-series from the final TSA assessment. Red points give estimated values with grey bars indicating approximate pointwise 95\% confidence intervals. The black line (also with $95 \% \mathrm{CI}$) shows the underlying random-walk recruitment model estimated by TSA.

Figure 3.6.14: North West. Estimates of Catch, Mean F_{4-6}, SSB and Recruitment with final run 95% confidence intervals (grey shading) from retrospective TSA runs. Catch and SSB are in thousand tonnes and recruitment in millions.

Figure 3.6.15: North West. Comparison of final assessment results with previous assessment conducted in 2011. Recruitment is in thousands. SSB is shown as mean standardised (over the common time period) to allow for comparison between results in live weight (current assessment) and muscle weight (2011 assessment).

Figure 3.6.16: West coast survey. VMS effort intensity (UK vessels) overlaid with survey station locations (shown as crosses).

Figure 3.8.1: Shetland. Total catch-at-age numbers (in thousands).

Figure 3.8.2: Shetland. Mean weights-at-age (kg) in total catch (also used for stock weights).

Figure 3.8.3: Shetland. Catch at age (by proportion): mean standardised over time by age class. Dark shaded circles represent above average values and white circles below average.

Figure 3.8.4: Shetland. Distribution of dredge survey catch rates (2013-2016). Note that due to poor weather, no surveys could be conducted in 2014 and 2015 and only a partial survey took place in 2016.

Figure 3.8.5: Shetland. Mean standardised survey catch at age. Dark shaded circles represent above average values and white circles below average.

Figure 3.8.6: Shetland. Mean standardised survey and commercial catch at age comparison. Upper plot: Clupea survey, lower plot: Alba survey.

Figure 3.8.7: Shetland. TSA stock summaries from the final TSA run. Catch and SSB are in thousand tonnes and recruitment (age 3) in millions. Catch figure shows both model estimates (red line) and input data (points). Estimates are plotted with approximate 95 \% confidence intervals.

year

Figure 3.8.8: Shetland. Standardised catch residuals by age from the final TSA run.

year

Figure 3.8.9: Shetland. Standardised survey residuals by age (Clupea survey) from the final TSA run.

year

Figure 3.8.10: Shetland. Standardised survey residuals by age (Alba survey) from the final TSA run.

Figure 3.8.11: Shetland. Stock-recruit plot from the final TSA run. Recruitment (age 3) is in millions and SSB in thousand tonnes. Values are labelled with year class.

Figure 3.8.12: Shetland. Estimated recruitment time-series from the final TSA assessment. Red points give estimated values with grey bars indicating approximate pointwise 95% confidence intervals. The black line (also with $95 \% \mathrm{CI}$) shows the underlying random-walk recruitment model estimated by TSA.

Figure 3.8.13: Shetland. Estimates of Catch, Mean F_{4-6}, SSB and Recruitment with final run 95% confidence intervals (grey shading) from retrospective TSA runs.
Catch and SSB are in thousand tonnes and recruitment (age 3) in millions.

Figure 3.8.14: Shetland. Comparison of final assessment results with previous assessment conducted in 2011. Recruitment is in thousands. SSB is shown as mean standardised (over the common time period) to allow for comparison between results in live weight (current assessment) and muscle weight (2011 assessment).

Figure 3.8.15: Shetland survey. VMS effort intensity (UK vessels) overlaid with survey station locations (shown as crosses).

Figure 3.9.1: West of Kintyre. Total catch-at-age numbers (in thousands).

Figure 3.9.2: West of Kintyre. Mean weights-at-age (kg) in total catch (also used for stock weights).

Figure 3.9.3: West of Kintyre. Catch at age (by proportion): mean standardised over time by age class. Dark shaded circles represent above average values and white circles below average.

Figure 3.9.4: West of Kintyre. Mean standardised survey catch at age. Dark shaded circles represent above average values and white circles below average.

Figure 3.9.5: West of Kintyre. Mean standardised survey and commercial catch at age comparison. Upper plot: Aora survey, middle plot: Aora II survey, lower plot: Alba survey.

Figure 3.9.6: West of Kintyre. TSA stock summaries from the final TSA run. Catch and SSB are in thousand tonnes and recruitment (age 3) in millions. Catch figure shows both model estimates (red line) and input data (points). Estimates are plotted with approximate 95 \% confidence intervals.

Figure 3.9.7: West of Kintyre. Standardised catch residuals by age from the final TSA run.

Figure 3.9.8: West of Kintyre. Standardised survey residuals by age (Aora survey) from the final TSA run.

Figure 3.9.9: West of Kintyre. Standardised survey residuals by age (Aora II survey) from the final TSA run.

Figure 3.9.10: West of Kintyre. Standardised survey residuals by age (Alba survey) from the final TSA run.

Figure 3.9.11: West of Kintyre. Stock-recruit plot from the final TSA run.
Recruitment (age 3) is in millions and SSB in thousand tonnes. Values are labelled with year class.

Figure 3.9.12: West of Kintyre. Estimated recruitment time-series from the final TSA assessment. Red points give estimated values with grey bars indicating approximate pointwise 95% confidence intervals. The black line (also with $95 \% \mathrm{CI}$) shows the underlying random-walk recruitment model estimated by TSA.

Figure 3.9.13: West of Kintyre. Estimates of Catch, Mean F $_{4-6}$, SSB and Recruitment with final run 95% confidence intervals (grey shading) from retrospective TSA runs. Catch and SSB are in thousand tonnes and recruitment in millions.

Figure 3.9.14: West of Kintyre. Comparison of final assessment results with previous assessment conducted in 2011. Recruitment is in thousands. SSB is shown as mean standardised (over the common time period) to allow for comparison between results in live weight (current assessment) and muscle weight (2011 assessment).

[^0]: ${ }^{1}$ Samples from the Shetland area are collected and provided by staff from NAFC Marine Centre under the Memorandum of Understanding between NAFC Marine Centre and MSS.

[^1]: ${ }^{1}$ VMS data for scallop vessels in the Shetland assessment area suggests that the majority of scallop fishing (at least by these larger vessels) occurs within the six mile limit of Shetland and is therefore licensed and managed under the SSMO.

[^2]: ${ }^{1}$ Fixed parameter.

[^3]: ${ }^{1}$ Fixed parameter.

[^4]: ${ }^{1}$ Fixed parameter.

[^5]: ${ }^{1}$ Fixed parameter.

[^6]: ${ }^{1}$ Fixed parameter.

[^7]: ${ }^{1}$ Fixed parameter.

[^8]: ${ }^{1}$ Fixed parameter.

